平面向量平行公式
平行的公式为若a,b是两个向量:a=(x,y)b=(m,n);则a⊥b的充要条件是a·b=0,即(xm+yn)=0。向量a=(x1,y1),向量b=(x2,y2),x1y2-x2y1=0。a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。“在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。?若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0”平行向量:方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量。
向量平行公式和垂直公式是什么?
向量垂直,平行的公式为:若a,b是两个向量:a=(x,y)b=(m,n);则a⊥b的充要条件是a·b=0,即(xm+yn)=0;向量平行的公式为:a//b→a×b=xn-ym=0;向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。向量能够进入数学并得到发展,首先应从复数的几何表示谈起。18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题。人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学中。
平面向量的概念
平面向量的概念如下:平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,具有代数形式与几何形式的双重身份,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。平面向量发展历程:向量这个术语作为现代数学物理学中的一个重要概念,首先是由英国数学家哈密顿使用的。向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。
平面向量的概念
平面向量的概念是在二维平面内既有方向又有大小的量。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a、b、c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量这个术语作为现代数学物理中的一个重要概念,首先是由英国数学家哈密顿使用的。向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。