对数

时间:2024-11-18 15:18:28编辑:莆田seo君

对数函数性质运算法则是什么?

由指数和对数的互相转化关系可得出:1、两个正数的积的对数,等于同一底数的这两个数的对数的和,即 2、两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即3、一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即4、若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即表达方式(1)常用对数:lg(b)=log10b(10为底数)。(2)自然对数:ln(b)=logeb(e为底数)。e为无限不循环小数,通常情况下只取e=2.71828。

对数的运算性质有哪些?

1.两个正数的积的对数,等于同一底数的这两个数的对数的和2.两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差3.一个正数幂的对数,等于幂的底数的对数乘以幂的指数4.若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

对数的概念是什么呢?

如果ab=N(a>0,a≠1),那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做底数,N叫做真数。对数符号log出自拉丁文logarithm,最早由意大利数学家卡瓦列里(Cavalieri)所使用。20世纪初,形成了对数的现代表示。为了使用方便,人们逐渐把以10为底的常用对数及以无理数e为底的自然对数分别记作lgN和lnN。对数的定义特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lgN。称以无理数e(e=2.71828…)为底的对数称为自然对数(natural logarithm),并记为lnN。零没有对数。在实数范围内,负数无对数。在虚数范围内,负数是有对数的。

对数的概念

对数的概念如下:对数的概念:在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。对数的定义:一般地,函数y=logax(a>0,且a-1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。对数函数的实际应用:在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。对数的历史:16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。约翰·纳皮尔(J.Napier,1550-1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数,对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。”

上一篇:冰雨火

下一篇:没有了