2012全国卷数学

时间:2024-11-06 20:14:42编辑:莆田seo君

2012高考理科数学(全国卷)

2012年普通高等学校招生全国统一考试
理科数学
注意事项:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为
A.3 B.6 C.8 D.10
2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有
A.12种 B.10种 C.9种 D.8种
(3)下面是关于复数z= 的四个命题
P1: =2 p2: =2i
P3:z的共轭复数为1+I P4 :z的虚部为-1
其中真命题为
A P2 ,P3 B P1 ,P2 C P2,P4 D P3 P4


(4)设F1,F2是椭圆E: + =1 (a>b>0)的左、右焦点 ,P为直线x= 上的一点,
△F2PF1是底角为30°的等腰三角形,则E的离心率为
A B C D

(5)已知{an}为等比数列, a4+a1=2 a5a6=-8 则a1+a10 =
A.7 B.5 C-5 D.-7
(6)如果执行右边的程序图,输入正整数N(N≥2)和实数a1.a2,…an,输入A,B,则

(A)A+B为a1a2,…,an的和
(B) 为a1a2.…,an的算式平均数
(C)A和B分别是a1a2,…an中最大的数和最小的数
(D)A和B分别是a1a2,…an中最小的数和最大的数
(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为

(A)6 (B)9 (C)12 (D)18
(8)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y²=16x的准线交于A,B两点, ,则C的实轴长为
(A) (B) (C)4(D)8
(9)已知w>0,函数 在 单调递减,则w的取值范围是
(A) (B) (C) (D)(0,2]
(10)已知函数 ,则y=f(x)的图像大致为

(11)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为O的直径,且SC=2,则此棱锥的体积为
(A) (B) (C) (D)
(12)设点P在曲线 上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为
(A)1-ln2(B) (C)1+ln2(D)
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答。第22题~第24题为选考题,考试依据要求作答。
二。填空题:本大题共4小题,每小题5分。
(13)已知向量a,b夹角为45°,且|a|=1,|2a-b|= ,则|b|=____________.
(14)设x,y满足约束条件 则z=x-2y的取值范围为__________.
(15),某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为_________________.

(16)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为________。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知a,b,c分别为△ABC的三个内角A,B,C的对边, 。
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面积为 ,求b,c。
(18)(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花作垃圾处理。
(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率。
(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;
(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。
(19)(本小题满分12分)
如图,直三棱柱ABC-A1B1C1中,AC=BC= AA1,D是棱AA1的中点,DC1⊥BD。

(1)证明:DC1⊥BC;
(2)求二面角A1-BD-C1的大小。
(20)(本小题满分12分)
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点。
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C之有一个公共点,求坐标原点到m,n距离的比值。
(21)(本小题满分12分)
已知函数f(x)满足f(x)=f′(1)ex-1-f(0)x+ x2.
(1)求f(x)的解析式及单调区间;
(2)若f(x)≥ x2+ax+b,求(a+1)b的最大值。
请考生在第22、23、24题中任选一道作答,如果多做,则按所做的第一题计分。作答时请写清题号。
(22)(本小题满分10分)选修4—1;几何证明选讲
如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:

(Ⅰ)CD=BC;
(Ⅱ)△BCD △GBD。
(23)(本小题满分10分)选修4—4;坐标系与参数方程
已知曲线C1的参数方程式 ( 为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的极坐标方程式 =2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为 。
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为C1上任意一点,求 的取值范围。
(24)(本小题满分10分)选修4—5;不等式选讲
已知函数
(Ⅰ)当a=-3时,求不等式(x) 3的解集;
(2)若f(x)≤ 的解集包含[1,2],求a的取值范围。


2011新课标全国卷数学12题怎么做?

由图像观察,两函数图像共有4个交点,由于这两个函数图像都是关于点(1,0)对称,故四个交点也两两关于该点对称。
设四个交点分别为(x1,y1),(x2,y2),(x3,y3),(x4,y4)
则根据中点坐标公式有
(x1+x3)/2=1,(x2+x4)/2=1
所以x1+x2+x3+x4=4.

如果第一个函数是y=1/(1-x),那用此法得出的答案就是8.因为我不知道我下载的试卷是否有误,方法肯定没问题


高考数学文科2011卷全国2卷

2011年普通高等学校招生全国统一考试
文科数学(必修+选修I)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷
一、选择题(共l2小题,每小题5分,共60分)
(1)设集合 , 则
(A) (B) (C) (D) [
(2)函数 的反函数为
(A) (B)
(C) (D)
(3)设向量 满足 , ,则
(A) (B) (C) (D)
(4)若变量 满足约束条件 ,则 的最小值为
(A)17 (B)14 (C)5 (D)3
(5)下面四个条件中,使 成立的充分而不必要的条件是
(A) (B) (C) (D)
(6) 设 为等差数列 的前 项和,若 ,公差 , ,则
(A)8 (B)7 (C)6 (D)5
(7)设函数 ,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,则 的最小值等于
(A) (B) (C) (D)
(8)已知直二面角 ,点 为垂足,点 为垂足,若 ,则
(A) (B) (C) (D)
(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有
(A) 12种 (B) 24种 (C)30种 (D) 36种
(10)设 是周期为2的奇函数,当 时, ,则 =
(A) (B) (C) (D)
(11)设两圆 、 都和两坐标轴相切,且都过点 ,则两圆心的距离
(A)4 (B) (C)8 (D)
(12)已知平面 截一球面得圆 ,过圆心 且与 成 二面角的平面 截该球面得圆 ,若该球面的半径为4,圆 的面积为4 ,则圆 的面积为
(A) (B) (c) (D)
第Ⅱ卷
第Ⅱ卷共l0小题,共90分。
二、填空题(本大题共4小题,每小题5分,共20分把答案填在题中横线上)
(13) 的二项展开式中, 的系数与 的系数之差为     
(14) 已知 , ,则      
(15)已知正方体 中, 为 的中点,则异面直线 与 所成角的余弦值为    
(16)已知 分别为双曲线 的左、右焦点,点 ,点 的坐标为 , 为 的平分线,则      .
三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤

(17)(本小题满分l0分)(注意:在试题卷上作答无效)
设数列 的前 项和为 ,已知 求 和

(18)(本小题满分l2分)
的内角 的对边分别为 .己知
(Ⅰ)求 ;
(Ⅱ)若 求 与

(19) (本小题满分l2分)
根据以往统计资料,某地车主购买甲种保险的概率为 ,购买乙种保险但不购买甲种保险的概率为 设各车主购买保险相互独立.
(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.


(20)(本小题满分l2分)
如图,四棱锥 中, ,
侧面 为等边三角形, .
(Ⅰ)证明: 平面 ;
(Ⅱ)求 与平面 所成角的大小.


(21)(本小题满分l2分)
已知函数
(Ⅰ)证明:曲线 在 处的切线过点 ;
(Ⅱ)若 在 处取得极小值, ,求 的取值范围。



(22)(本小题满分l2分)
已知 为坐标原点, 为椭圆 在 轴正半轴上
的焦点,过 且斜率为 的直线 与 交于 两点,点 满

(Ⅰ)证明:点 在 上;
(Ⅱ)设点 关于点 的对称点为Q ,证明: 、 、Q四点在同一圆上。


上一篇:家庭教师中文网

下一篇:没有了