参数方程是什么意思?
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,联系变数x、y的变数t叫做参变数。相对而言,直接给出点坐标间关系的方程为普通方程。直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。扩展资料积分的保号性:如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个等于0,那么任何可积函数在A上的积分等于0。函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。参考资料来源:百度百科-参数方程参考资料来源:百度百科-积分
什么是参数方程
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,联系变数x、y的变数t叫做参变数。相对而言,直接给出点坐标间关系的方程为普通方程。直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。扩展资料积分的保号性:如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个等于0,那么任何可积函数在A上的积分等于0。函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。参考资料来源:百度百科-参数方程参考资料来源:百度百科-积分