刘徽割圆术的基本思想是什么?
刘徽割圆术的基本思想是:“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣。”就是说分割越细,误差就越小,无限细分就能逐步接近圆周率的实际值。他很清楚圆内接正多边形的边数越多,所求得的圆周率值就越精确这一点。刘徽用割圆的方法,从圆内接正六边形开始算起,将边数一倍一倍地增加,即12、24、48、96,因而逐个算出六边形、十二边形、二十四边形等的边长,这些数值逐步地逼近圆周率。他做圆内接九十六边形时,求出的圆周率是3.14,这个结果已经比古率精确多了。他算到了圆内接正三千零七十二边形,得到圆周率的近似值为3.1416。
刘徽的割圆术具体内容是什么?
刘徽从圆内接正六边形开始,使边数逐次加倍,作出正十二边形、正二十四边形…,并依次计算出它们的面积,这些结果将逐渐逼近圆面积,这样就可以求出圆周率的值,这种方法被称为刘徽割圆术。用刘徽的话来说,“割之弥细,失之弥少,割之又割,以至于不可割,则与圆合体而无所失矣。”意思就是说把圆周分得越细,即圆内接正多边形的边数越多,用它的面积去代替圆面积,就丢失的越少。不断地分割下去,让边数不断地增多,那么边数无限多的正多边形的面积就与圆面积相等了。