傅立叶

时间:2024-10-16 05:07:55编辑:莆田seo君

傅里叶定律是什么?

傅立叶定律是法国著名科学家傅立叶在1822年提出的一条热力学定律。该定律指在导热过程中,单位时间内通过给定截面的导热量,正比于垂直于该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。作用:基于傅立叶定律以及忽略惯性力的热子气守恒方程,求得了上述热子气粘性力的表达式。与此同时,从式可以看到傅立叶导热定律是反映了热子气压力与粘性力的平衡,是热子气动量方程在忽略惯性力条件下的一种近似。研究发现:傅立叶导热定律本质上是忽略惯性力条件下的热子气的压力梯度与粘性力的平衡方程;当惯性力可以忽略时,热子气的动量守恒方程退化为傅立叶导热定律。在极低温或极高热流密度时傅立叶导热定律不再适用。

傅里叶变化的意义是什么?

傅里叶变换的意义和理解:一、意义:从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。二、理解:傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换的相关说明:1、图像经过二维傅里叶变换后,其变换系数矩阵表明:若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅里叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅里叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。以上内容参考:百度百科-傅里叶变换

傅里叶定律是什么?

傅立叶定律是法国著名科学家傅立叶在1822年提出的一条热力学定律。该定律指在导热过程中,单位时间内通过给定截面的导热量,正比于垂直于该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。近代的观点把这种能量传输归因于原子运动导致的晶格波造成的。在非导体中,能量传输只依靠晶格波进行;在导体中(比如 银、铁),除了晶格波还有自由电子的平移运动。用来衡量不同物体导热能力的物理量就是热导率。傅立叶定律的意义:傅立叶定律是基于傅立叶定律以及忽略惯性力的热子气守恒方程,求得热子气粘性力的表达式。与此同时,从式可以看到傅立叶导热定律是反映了热子气压力与粘性力的平衡,是热子气动量方程在忽略惯性力条件下的一种近似。傅立叶导热定律本质上是忽略惯性力条件下的热子气的压力梯度与粘性力的平衡方程;当惯性力可以忽略时,热子气的动量守恒方程退化为傅立叶导热定律。在极低温或极高热流密度时傅立叶导热定律不再适用。

上一篇:小石潭记原文及翻译

下一篇:没有了