声速测量实验

时间:2024-10-12 07:45:33编辑:莆田seo君

物理学中“声速的测量”

分类: 理工学科
问题描述:

如果只用停表、尺子和人耳作为测量工具,你将怎样测量声音在空气中的传播速度?

1、说名你所设计的测量方案.

2、为了提高测量的精确度,你会怎样做.

解析:

加一把发出声音的枪可以把,大不了自己叫好了,同时作个手势



传统方法

方法1:一个声音产生后,并不会立刻传到你的耳朵,通常要经过一段时间。除非你自己有这种经验,否则这是很难理解的。例如:如果你参加一个运动会,坐在离鸣枪的人有一段距离的地方,你会先看到枪冒烟,后听到枪声。这是因为光行进的速度非常快(约1秒钟300000公里),而声音的速度就慢得多(约1秒种340米)。所以你会立刻看到枪冒烟,但声音要过一会儿之后才会听到。

于是早期测量声音的速度是利用枪来做实验。帮忙的人要拿着枪在一个量好的距离外,另一个人就拿着马表站在原点。在看到信号之后,帮忙的人就对空鸣枪。在原点的人一看到枪的火花和烟时,就把马表按下来;而当他听到枪声时,就再按一次马表让马表停下来。看到火花和听到枪声之间的时间,就是声音行经这一段量好距离所需的时间。就能算出声音的速度。根据这一原理你不妨在今后的校运动会的时候试验一下(利用百米赛跑就可以了).

为了测量声音的速度你需要一个马表和一个皮尺。量一个500公尺的距离,要尽可能量得准确一点。你和你的同学分别站在两端;你的同学两手各拿一块大石头(或者锣、鼓、或者干脆拍手--拍手的声音太低如果对方听不到就不好办了),你则拿一个马表。当你大叫“开始”时,你的同学要把石头举到头顶,尽量大声敲击。当你一看到石头撞在一起,就按下马表。等到你听到石头撞击的音,就再按一下马表让马表停下来。时间方面要记录到十分之一秒。如果能多做几次实验,算出时间的平均值是最好的。你只要用计算机把你和你同学的距离除以时间,就可以算出声音的速度了。

**声速的测量**

二十世纪以来,声学测量技术发展很快。目前声学仪器有较大发展,并具有高保真度,很宽的频率范围和动态范围,小的非线性畸变和良好的瞬态响应等。

过去,测量声波和振动的仪表都是模拟式电子仪表,测量的速度和准确度受到一定的限制。六十年代初。出现了数字式仪表,直接采用数字显示,提高了测量时读数的准确度。由于计算技术和高质量、低功耗的大规模集成电路的发展,人们已能用由微处理机控制的自动测量代替逐点测量,使许多需要事后计算的声学测量和分析工作可以用微计算机实时运算。

以微处理机为中心的测量仪器,不但实现了小型化、多功能,而且由于采用了快速博里叶换算法,从而实现了实时分析。同时也出现了一些新的声学测量和分析方法,例如实时频谱分析,声强测量,声源鉴别,瞬态信号分析,相关分析等。

今后声学测量的任务是采用新的测量技术,提出新的测量方法,使用自动化数字式仪器,以提高测量的准确度和速度。

回顾历史,可以看到,在发展经典声学的过程中,许多研究工作是直接用人耳来听声音的。直到本世纪,发展了无线电电子学,才使声波的测量采用了电声换能器和电子测量仪器。 高性能的测量传声器、频谱分析仪和声级记录器实现了声信号的声压级测量,频谱分析和声信号特性的自动记录;从而可以测量各种不同频率、不同强度和波形的声波,扩展了声学的研究范围,促进了近代声学的发展。可以期望,计算技术和大规模集成电路的发展,微计算机和微处理机在声学工作中的应用,必将促使近代声学进一步发展。

传统方法

方法1:一个声音产生后,并不会立刻传到你的耳朵,通常要经过一段时间。除非你自己有这种经验,否则这是很难理解的。例如:如果你参加一个运动会,坐在离鸣枪的人有一段距离的地方,你会先看到枪冒烟,后听到枪声。这是因为光行进的速度非常快(约1秒钟300000公里),而声音的速度就慢得多(约1秒种340米)。所以你会立刻看到枪冒烟,但声音要过一会儿之后才会听到。

于是早期测量声音的速度是利用枪来做实验。帮忙的人要拿着枪在一个量好的距离外,另一个人就拿着马表站在原点。在看到信号之后,帮忙的人就对空鸣枪。在原点的人一看到枪的火花和烟时,就把马表按下来;而当他听到枪声时,就再按一次马表让马表停下来。看到火花和听到枪声之间的时间,就是声音行经这一段量好距离所需的时间。就能算出声音的速度。根据这一原理你不妨在今后的校运动会的时候试验一下(利用百米赛跑就可以了).

为了测量声音的速度你需要一个马表和一个皮尺。量一个500公尺的距离,要尽可能量得准确一点。你和你的同学分别站在两端;你的同学两手各拿一块大石头(或者锣、鼓、或者干脆拍手--拍手的声音太低如果对方听不到就不好办了),你则拿一个马表。当你大叫“开始”时,你的同学要把石头举到头顶,尽量大声敲击。当你一看到石头撞在一起,就按下马表。等到你听到石头撞击的音,就再按一下马表让马表停下来。时间方面要记录到十分之一秒。如果能多做几次实验,算出时间的平均值是最好的。你只要用计算机把你和你同学的距离除以时间,就可以算出声音的速度了。

方法二.

测量声音的速度还有一种利用回音来测量的的方法:(

所谓回声,就是声音在传播的过程中碰到高大的障碍物被反射了回来,不是在电视里(当然是夸张)有时看到一个人面对大山大喊一声,可以听到三个、四个甚至五个回声吗?

哪么我们就可以根据这样的原理,站在离高墙较远的地方(事先测出你到高墙的距离)大声地喊一下,在你喊的同时按下秒表,当你听到自己的回声再按一下秒表,这样一来,你的喊声从你那儿到高墙打了一个来回,你只要把上面说的你跟高墙的距离除以测得的时间的一半,这声音的速度也就出来了(这里要注意的是因为人能分辨出自己的回声的时间间隔要超过0.1秒,声音有传播速度是340米每秒,所以你与墙的距离,至少不得少于17米才行,而且中间还不能有障碍物)。

利用回声测声音速度比较高级和精确的做法是:

利用超声波遇到物体发生反射,超声波发生器通过电缆线连与超声接受器连为一体,接受器能将接收到的超声波信号进行处理并在电脑屏慕上显示其波形,超声波发生器每隔固定时间发射一短促的超声波信号,而接收到的由于障碍物反射回的超声波信号经仪器处理后也可在电脑屏上显示出来(两个波的形状一大一小便于区分),每个反射波与相应的发射波之间的滞后的时间可经电脑的处理输出,即能直接从电脑上读出一个超声波发射后遇到障碍物返回来的时间间隔,只要你事先测出超声波发生器到障碍物之间的距离S,并将S除以往返时间的一半就是声音在空气里的传播速度了。(超声波在空气中的传播速度跟一般人能听得到的声波速度是相等的)。

测量声速最简单、最有效的方法之一是利用声速v 、振动频率f和波长λ之间的基本关系,即实验时用结构相同的一对(发射器和接收器)超声压电陶瓷换能器,来作声压与电压之间的转换。利用示波器观察超声波的振幅和相位,用振幅法和相位法测定波长,由示波器直接读出频率f。

(一)谐振频率

超声压电陶瓷换能器是实验的关键部件,每对超声压电陶瓷换能器都有其固有的谐振频率,当换能器系统的工作频率处于谐振状态时,发射器发出的超声波功率最大,是最佳工作状态。

(二)振幅法

由发射器发出的声波近似于平面波。经接收器反射后,波将在压电陶瓷换能器的两端面间来回反射并且叠加。当两个换能器之间的距离等于半波长的整数倍时发生共振,产生共振驻波现象,波幅达到极大。由纵波的性质可以证明,振动位移处于波节时,则声压是处于波腹。接收器端面近似为一波节,接收到的声压最大,经接收器转换成的电信号也最强。声压变化和接收器位置的关系可从实验中测出,当接收器端面移动到某个共振位置时,示波器上会出现最强的电信号,如果继续移动接收器,将再次出现最强的电信号,两次共振位置之间的距离即为1/2λ 。

(三)相位法

波是振动状态的传播,也可以说是相位的传播。沿传播方向上的任何两点,其振动状态相同,或者说其相位差为2π的整数倍时两点间的距离应等于波长λ的整数倍,利用这个公式可测量波长。由于发射器发出的是近似于平面波的超声波,当接收器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。沿传播方向移动接收器时,总可以找到一个位置使得接收到的信号与发射的信号同相。移过的这段距离必然等于超声波的波长λ 。为了判断相位差并且测定波长,可以利用双踪示波器直接比较发射的信号和接收的信号,同时沿传播方向移动接收器寻找同相点。也可以利用利萨如图形寻找同相时椭圆退化为斜直线的点。


声速的测量实验原理

声速的测量实验原理,由于超声波具有波长短,易于定向发射、易被反射等优点。由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。超声波的发射与接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法就是利用压电效应与磁致伸缩效应来实现的。本实验采用的就是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。

大学物理实验 示波器的使用 对实验的讨论 (高分悬赏!)

示波器的使用
说明和功能
我们可以把示波器简单地看成是具有图形显示的电压表.
普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测量读数.而示波器则与共不同.示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形.
示波器和电压表之间的主要区别是:
1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值.但是电压表不能给出有关信号形状的信息.有的电压表也能测量信号的峰值电压和频率.然而,示波器则能以图形的方式显示信号随时间变化的历史情况.
2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号.
显示系统
示波器的显示器件是阴极射线管,缩写为CRT,见图1.阴极射线管的基础是一个能产生电子的系统,称为电子枪.电子枪向屏幕发射电子.电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上.屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来.
图1 阴极射线管图
电子在从电子枪到屏幕的途中要经过偏转系统.在偏转系统上施加电压就可以使光点在屏幕上移动.偏转系统由水平(X)偏转板和垂直(Y)偏转板组成.这种偏转方式称为静电偏转.
在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺.标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm.有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线.这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量.我们后面会讨论这个问题.
如上所述,受到电子轰击后,CRT上的荧光物质就会发光.当电子束移开后,荧光物质在一个短的时间内还会继续发光.这个时间称为余辉时间.余辉时间的长短随荧光物质的不同而变化.最常用的荧光物质是P31,其余辉时间小于一毫秒(ms).而荧光物质P7的余辉时间则较长,约为300ms,这对于观察较慢的信号非常有用.P31材料发射绿光,而P7材料发光的颜色为黄绿色.
将输入信号加到Y轴偏转板上,而示波器自己使电子束沿X轴方向扫描.这样就使得光点在屏幕上描绘出输入信号的波形.这样扫出的信号波形称为波形轨迹.
影响屏幕的控制机构有:
—辉度
辉度控制用来调切波形显示的亮度.本书中用作示例的示波器所采用的电路能够根据不同的扫描速度自动调切辉度.当电子束移动得比较快时,荧光物质受到激励的时间就变短,因此必须增加辉度才能看清轨迹.相反,当电子束移动缓慢时,屏幕上的光点变得很亮,因此必须减小辉度以免荧光物质被烧坏.从而延长示波管的寿命.
对于屏幕上的文字部分,另有单独的辉度控制机构.
—聚焦
聚焦控制机构用来控制屏幕上光点的大小,以便获得清晰的波形轨迹.有些示波器,例如本书用作示例的示波器上,聚集也是由示波器自己进行最佳控制的,从而能在不同的辉度和不同的扫描下保持清晰的波形轨迹.另外也提供手动调节的聚集控制.
—扫描旋转
这个控制机构使X轴扫描线和水平标尺线对齐.由于地球的磁场在各个地方是不同的,这将会影响示波管显示的扫描线.扫迹旋转功能就用来对此进行补偿.扫描旋转功能是预先调好的,通常只需在示波器搬动后再行调节.
—标尺照明
标尺亮度可以单独控制.这对于屏幕摄影或在弱光线条件下工作时非常有用.
—Z调制
扫描的辉度可以用电气的方法通过一个外加的信号来改变.这对于由外部信号来产生水平偏转以及使用X-Y显示方式来寻找频率关系的应用中是十分有用的.
此信号输入端通常是示波器后面板上的一个BNC插座.
1.2 模拟示波器方框图
CRT是所有示波器的基础.现在我们已经对它有所了解.下面我们就看一看示波管是怎样作为示波器的心脏来起作用的.
我们已经看到,示波器有两个垂直偏转板,两个水平偏转板和一个电子枪.从电子枪发射出的电子束的强度可以用电气的办法来加以控制.
在上术基础上,再增添下面叙述的电路就可以构成一个完整的示波器(见图2)
图2 模拟示波器方框图
示波管的垂直偏转系统包括:
—输入衰减器(每通道一个)
—前置放大器(每通道一个)
—用来选择使用哪一个输入通道的电子开关
—偏转放大器
示波器的水平偏转系统包括:时基、触发电路和水平偏转放大器
辉度控制电路用电子学的方法在恰当的时刻点亮和熄灭扫迹.
为使所有这些电路工作,示波器需要有一个电源.此电源从交流市电或者从机内或外部的电池获取能量,使示波器工作.任何示波器的基本性能都是由它的垂直偏转系统的特性来决定的,所以我们首先来详细地考察这一部分.
1.3 垂直偏转
灵敏度
垂直偏转系统对输入信号进行比例变换,使之能在屏幕上表现出来.示波器可以显示峰峰值电压为几毫伏到几十伏的信号.因此必须把不同幅度的信号进行变换以适应屏幕的显示范围,这样就可以按照标尺刻度对波形进行测量.为此就要求对大信号进行衰减、对小信号进行放大.示波器的灵敏度或衰减器控制就是为此而设置的.
灵敏度是以每格的伏特数来衡量的看一下图3可以知道其灵敏度设置为1V/格.因此,峰峰值为6V的信号使得扫迹在垂直方向的6个格内偏转变化.知道了示波器的灵敏度设置值和电子束在垂直方向扫描的格数,我们就可以测量出信号的峰峰电压值.
在多数的示波器上,灵敏度控制都是按1-2-5的序列步进变化的.即灵敏度.设置颠倒为10mV/格、20mV/格、50mV/、100mV/格等等.灵敏度通常是用幅度上升/下降钮来进行控制的,而在有些示波器则是用转动垂直灵敏度旋钮来进行.
如果使用这些灵敏度步进不能调节信号使之能够准确的按照要求在屏幕上显示,那么就可以使用可变(VAR)控制.在第6章我们将会看到,使用标尺刻度来进行信号上升时间的测量就是一个很好的例子.可变控制能够在1-2-5的步进值之间对灵敏度进行连续调节.通常当使用可变控制时,准确的灵敏度值是不知道的.我们只知道这时示波器的灵敏度是在1-2-5序列的两个步进值之间的某个值.这时我们称该通道的Y偏转是未校准的或表示为"uncal".这种未校准的状态通常在示波器的前面板或屏幕上指示出来.
在更现代化的示波器,例如我们用作示例的示波器,由于彩用了现代先进的技术进行控制和校准.因此示波器的灵敏度可以在最小值和最大值之间连续变化,而始终保持处于校准状态.
在老式的示波器上,通道灵敏度的设置值是从灵敏度控制旋钮周围的刻度上读出的.而在新型的示波器上,通道灵敏度设置值清晰地显示在屏幕上,如图3所示,或者用一个单独的CD显示器显示出来.
图3 在灵敏度为1v/格的情况下,峰峰值为6v的信号使电子束在垂直方向偏转6格
耦合
耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式.耦合控制可以有两种设置方式,即DC耦合和AC耦合.
DC耦合方式为信号提供直接的连接通路.因此信号提供直接的连接通路.因此信号的所有分量(AC和:DC)都会影响示波器的波形显示.
AC耦合方式则在BDC端和衰减器之间串联一个电容.这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减.示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率.示波器的低频截止频率主要决定于其输入耦合电容的数值.示波器的低频截止频率典型值为10Hz,见图4.
图4 说明AC及DC耦合、输入接地以及50Ω输入阻抗功能选择的简化输入电路
和耦合控制机构有关的另一个功能是输入接地功能.这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平.当选择接地时,在屏幕上将会看到一条位于0V电平的直线.这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置.
输入阻抗
多数示波器的输入阻抗为1MΩ和大约25pF相关联.这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小.
有些信号来自50Ω输出阻搞的源.为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接.这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接.某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能.为避免误操作,选择此功能时需经再次确认.由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用.
位置
垂直位置控制或POS控制机构控制扫迹在屏幕Y轴的位置.在输入耦合控制中选择接地,这时就将输入信号断开,这样就可以找到地电平的位置.在更先进的示波器上设有单独的地电平指示器,它可以让用户能连续地获得波形的参考电平.
动态范围
动态范围就是示波器能够不失真地显示信号的最大幅值,在此信号幅值下只要调节示波器的垂直位置仍能观察到波形的全部.对于Fluke公司的示波器来说,动态范围的典型值为24路(3个屏幕)
相加和反向
简单的把两个信号相加起来似乎没有什么实际意义.然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减.这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的.
从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真.
由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减.
交替和断续
示波器CRT本身一次只能显示一条扫迹.然而,在很多示波器应用中,常常要进行信号的比较,例如,研究输入/输出信号间的关系,或者一个系统对信号的延迟等.这就要求示波器实际上能同时显示不只一个信号.
为了达到这一目的,可以用两种办法来控制电子束:
1.可以交替地画完一条扫迹,再画另一条扫迹.这种方法称为交替模式,或简称为ALT模式.
2.可以在两条扫迹之间迅速的进行开关或斩波切换,从而分段的画出两条扫迹.这称为断续模式或CHOP模式.其结果是在一次扫描的时间里一段接一段的画出两条扫迹.
断续模式适合于在低时基速率下显示低频率信号,因为这时斩波器开关能快速进行切换.
交替模式适合于需要使用较快时基设置的高频率信号的显示.本书中我们用作示例的示波器在不同的扫描速度下能自动地ALT或CHOP模式以给出最好的显示效果.用户也可以手动选择ALT或CHOP模式以适合特殊信号的需求.
带宽
示波器最生根的技术指标就是带宽.示波器的带宽表明了该示波器垂直系统的频率响应.示波器的带宽定义为示波器在屏幕上能以不低于真实信号3dB的幅度来显示信号的最高频率.
—3dB点的频率就是示波器所显示的信号幅度“Vdisp”为示波器输入端真实信号值“Vinput”的71%时的信号频率,如下式所示:设:
dB(伏)=20log(电压比)
—3Db=20log(Vdisp/Vinput)
—0.15=log(Vdisp/Vinput)
10-0.15=Vdisp/Vinput
Vdisp=0.7Vinput
图5表示出一个100MHz示波器的典型频率响应曲线.
图5 一台典型为100MHz示波器的频率响应曲线(简化的曲线和实际的曲线)
出于现实的理由,通常把带宽想象成为叔响曲线一直平坦延伸至其截止频率,然后从该频率以-20dB/+倍频程的斜率下降.当然,这是一种简化的考虑.实际上,放大器的灵敏度从较低的频率就开始下降,百在其截止频率达到-3dB.图5中中同时给出了简化的频率响应曲线和实际的频率响应曲线.
带宽限制器
使用带宽限制器可以把通常带宽在100MHz以上的宽带示波器的频带减小到20MHz的典型值.这样就降低了噪声电平和干扰,这对于进行高灵敏度的测量是非常有用的.
上升时间
上升时间直接和带宽有关.上升时间通常规定为信号从其稳态最大值的10%到90%所用的时间.
上升时间是一个示波器从理论上来说能够显示的最快的瞬变的时间.示波器的高频响应曲线是经过认真安排的.这就保证了具有高谐波含量的信号,如方波,能够在屏幕上精确的再现.如果频响曲线下降太快,则在信号的快速上升沿上就会发生振铃现象.如果频响曲线下降太慢,即在频响曲线上下降开始得过早,则示波器总的高频响应就受到影响,使得方波失去“方形”特性.
对于各种通用示波器来说,其高频响应曲线是类似的.从该曲线我们可以得到一个示波器带宽和上升时间的简单关系公式.此公式为:
tr(s)=0.35/BW(Hz)
对于高频示波器来说,这个公式可以表示为:
tr(ns)=350/BW(MHz)
对于一个100MHz的示波器来说,上升时间为3.5(ns=纳秒10-9秒)
在示波器的标尺上刻有标明0%和100%的专门的线,用来进行上升时间的测量.测量时我们先用VAR灵敏度控制机构将被测认号的顶部和底部分别和标有0%和100%的线对齐.
然后找出信号和标尺上标有10%和90%的两条线的交点.这样,上升时间就可以从这两个交点沿X轴方向的时间间隔读出来.
要想测量一台示波器的上升时间,我们使用与上述相同的方法,只是要求测试信号的上升时间应当比该示波器的上升时间短得多.为获得2%的测量误差,测试信号的上升时间至少应小于示波器上升时间的五分之一.示波器上显示的上升时间应当是示波器上升时间和信号上升时间和组合函数.


大学物理实验报告示波器的原理和使用

1、原理:示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。2、使用:示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,又可以测量脉冲或非正弦电压的幅度。更有用的是它可以测量一个脉冲电压波形各部分的电压幅值,如上冲量或顶部下降量等。这是其他任何电压测量仪器都不能比拟的。1、原理:示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测打在涂有荧光材料的屏幕上,可以产生小光斑(这是传统模拟示波器的工作原理)。在被测信号的作用下,电子束就像笔尖,可以在屏幕上绘制被测信号瞬时值的曲线。示波器可以观察各种信号振幅随时间变化的波形曲线,也可以测试各种电量,如电压、电流、频率、相位差、调幅等。2、使用:示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,更有用的是它可以测量脉冲电压波形的各个部分的电压幅值,如脉冲或顶部压降。这是任何其他电压测量仪器都无法比拟的。扩展资料:示波器的优势:1、体积小、重量轻,便于携带,液晶显示器。2、可以长期贮存波形,并可以对存储的波形进行放大等多种操作和分析。3、特别适合测量单次和低频信号,测量低频信号时没有模拟示波器的闪烁现象。4、更多的触发方式,除了模拟示波器不具备的预触发,还有逻辑触发、脉冲宽度触发等。参考资料来源:百度百科-示波器参考资料来源:百度百科-数字示波器

上一篇:泄露密码

下一篇:没有了