单纯形法θ怎么求
计算:最小比值为Ø=min{bi/aik,aik>0},即为基变量值与所在行的换入变量所在列的对应的大于0的元素相除,得到的最小比值对应的哪一行,则行对应的基变量为换出变量。根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…x n的值称为一个解,满足所有的约束条件的解称为可行解。使目标函数达到最大值(或最小值)的可行解称为最优解。这样,一个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。求解线性规划问题的目的就是要找出最优解。对于线性规划问题使用单纯形法进行表上作业所得到的表格。直接用公式进行单纯形法的迭代计算是很不方便的,其中最复杂的是进行基变换,但施行基变换所用的实际上是消元法。由线性代数知道,用消元法解线性方程组可在增广矩阵上利用行初等变换进行计算。因此,我们可以将单纯形法的全部计算过程在一个类似增广矩阵的数表上进行,这种表格称为单纯形表。以上内容参考:百度百科-单纯形表
单纯形法的计算步骤
第一步:基于约束条件方程组的系数矩阵,通过寻找或构造单位矩阵的方法,确定基变量,从而求出初始基本可行解,再利用初始基本可行解及线性规划模型提供的信息,编制初始单纯形表。第二步:将检验数cj-zj作为判断基本可行解是否为最优解的标准,(1)若所有非基变量的检验数cj-zj<0,已经达到最优解,计算停止。(2)若存在cj-zj>0,但所有cj-zj>0所在列对应的所有aij≤0,无最优解,计算停止。(3)若至少存在一个cj-zj>0,并且所对应的所有j列中至少有一个aij>0,没有达到最优解,转到第三步。第三步:继续迭代,求解下一个使目标函数更优的基本可行解。