公式下载

时间:2024-09-18 03:41:34编辑:莆田seo君

高中数学用到的初中公式

1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)

实用工具:常用数学公式


公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h


初中和高中所有的公式

1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数


小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)


长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒

小学数学几何形体周长 面积 体积计算公式


1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

10、圆的面积=圆周率×半径×半径
对数的性质及推导
用^表示乘方,用log(a)(b)表示以a为底,b的对数
*表示乘号,/表示除号

定义式:
若a^n=b(a>0且a≠1)
则n=log(a)(b)


基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)

推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)

3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N) = log(a)(M) - log(a)(N)

4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)




其他性质:

性质一:换底公式
log(a)(N)=log(b)(N) / log(b)(a)

推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]

综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)



性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n) / ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导 完 )

公式三:
log(a)(b)=1/log(b)(a)

证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1
初中数学定理公式大全

1、过两点有且只有一条直线
  2、两点之间线段最短
  3、同角或等角的补角相等
  4、同角或等角的余角相等
  5、过一点有且只有一条直线和已知直线垂直
  6、直线外一点与直线上各点连接的所有线段中,垂线段最短
  7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
  8、如果两条直线都和第三条直线平行,这两条直线也互相平行
  9、同位角相等,两直线平行
  10、内错角相等,两直线平行
  11、同旁内角互补,两直线平行
  12、两直线平行,同位角相等
  13、两直线平行,内错角相等
  14、两直线平行,同旁内角互补
  15、定理三角形两边的和大于第三边
  16、推论三角形两边的差小于第三边
  17、三角形内角和定理三角形三个内角的和等于180°
  18、推论1直角三角形的两个锐角互余
  19、推论2三角形的一个外角等于和它不相邻的两个内角的和
  20、推论3三角形的一个外角大于任何一个和它不相邻的内角
  21、全等三角形的对应边、对应角相等
  22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
  23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
  24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
  25、边边边公理(SSS)有三边对应相等的两个三角形全等
  26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
  27、定理1在角的平分线上的点到这个角的两边的距离相等
  28、定理2到一个角的两边的距离相同的点,在这个角的平分线上
  29、角的平分线是到角的两边距离相等的所有点的集合
  30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
  31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
  32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
  33、推论3等边三角形的各角都相等,并且每一个角都等于60°
  34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
  35、推论1三个角都相等的三角形是等边三角形
  36、推论2有一个角等于60°的等腰三角形是等边三角形
  37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
  38、直角三角形斜边上的中线等于斜边上的一半
  39、定理线段垂直平分线上的点和这条线段两个端点的距离相等
  40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
  41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
  42、定理1关于某条直线对称的两个图形是全等形
  43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
  44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
  45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
  47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
  48、定理四边形的内角和等于360°
  49、四边形的外角和等于360°
  50、多边形内角和定理n边形的内角的和等于(n-2)×180°
  51、推论任意多边的外角和等于360°
  52、平行四边形性质定理1平行四边形的对角相等
  53、平行四边形性质定理2平行四边形的对边相等
  54、推论夹在两条平行线间的平行线段相等
  55、平行四边形性质定理3平行四边形的对角线互相平分
  56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形
  57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形
  58、平行四边形判定定理3对角线互相平分的四边形是平行四边形
  59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形
  60、矩形性质定理1矩形的四个角都是直角
  61、矩形性质定理2矩形的对角线相等
  62、矩形判定定理1有三个角是直角的四边形是矩形
  63、矩形判定定理2对角线相等的平行四边形是矩形
  64、菱形性质定理1菱形的四条边都相等
  65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
  66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
  67、菱形判定定理1四边都相等的四边形是菱形
  68、菱形判定定理2对角线互相垂直的平行四边形是菱形
  69、正方形性质定理1正方形的四个角都是直角,四条边都相等
  70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
  71、定理1关于中心对称的两个图形是全等的
  72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
  73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
  74、等腰梯形性质定理等腰梯形在同一底上的两个角相等
  75、等腰梯形的两条对角线相等
  76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
  77、对角线相等的梯形是等腰梯形
  78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
  79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
  80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
  81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
  82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
  83、(1)比例的基本性质:
  如果a:b=c:d,那么ad=bc
  如果ad=bc,那么a:b=c:d
  84、(2)合比性质:
  如果a/b=c/d,那么(a±b)/b=(c±d)/d
  85、(3)等比性质:
  如果a/b=c/d=…=m/n(b+d+…+n≠0),
  那么(a+c+…+m)/(b+d+…+n)=a/b
  86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
  87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
  88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
  89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
  90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
  91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
  92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
  93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
  94、判定定理3三边对应成比例,两三角形相似(SSS)
  95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
  97、性质定理2相似三角形周长的比等于相似比
  98、性质定理3相似三角形面积的比等于相似比的平方
  99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
  100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
  101、圆是定点的距离等于定长的点的集合
  102、圆的内部可以看作是圆心的距离小于半径的点的集合
  103、圆的外部可以看作是圆心的距离大于半径的点的集合
  104、同圆或等圆的半径相等
  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
  106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
  107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
  108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
  109、定理不在同一直线上的三点确定一个圆。
  110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
  111、推论1
  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
  112、推论2圆的两条平行弦所夹的弧相等
  113、圆是以圆心为对称中心的中心对称图形
  114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
  115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
  116、定理一条弧所对的圆周角等于它所对的圆心角的一半
  117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
  118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
  119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
  120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
  121、①直线L和⊙O相交d
  ②直线L和⊙O相切d=r
  ③直线L和⊙O相离d>r
  122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
  123、切线的性质定理圆的切线垂直于经过切点的半径
  124、推论1经过圆心且垂直于切线的直线必经过切点
  125、推论2经过切点且垂直于切线的直线必经过圆心
  126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
  127、圆的外切四边形的两组对边的和相等
  128、弦切角定理弦切角等于它所夹的弧对的圆周角
  129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
  130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
  131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
  132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
  133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
  134、如果两个圆相切,那么切点一定在连心线上
  135、①两圆外离d>R+r
  ②两圆外切d=R+r
  ③两圆相交R-rr)
  ④两圆内切d=R-r(R>r)
  ⑤两圆内含dr)
  136、定理相交两圆的连心线垂直平分两圆的公共弦
  137、定理把圆分成n(n≥3):
  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形
  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
  138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
  139、正n边形的每个内角都等于(n-2)×180°/n
  140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
  141、正n边形的面积Sn=pnrn/2p表示正n边形的周长
  142、正三角形面积√3a/4a表示边长
  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
  144、弧长计算公式:L=n兀R/180
  145、扇形面积公式:S扇形=n兀R^2/360=LR/2
  146、内公切线长=d-(R-r)外公切线长=d-(R+r)
  正弦定理a/sinA=b/sinB=c/sinC=2R
  注:其中R表示三角形的外接圆半径
  余弦定理b2=a2+c2-2accosB
注:角B是边a和边c的夹角

公式分类公式表达式
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac>0注:方程有两个不等的实根
b2-4ac<0注:方程没有实根,有共轭复数根

三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c‘*h
正棱锥侧面积S=1/2c*h‘正棱台侧面积S=1/2(c+c‘)h‘
圆台侧面积S=1/2(c+c‘)l=pi(R+r)l球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S‘L注:其中,S‘是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h


Excel函数公式大全

一、数字处理1、取绝对值函数公式:=ABS(数字)2、取整函数公式:=INT(数字)3、四舍五入函数公式:=ROUND(数字,小数位数)二、判断公式1、如果计算的结果值错误那么显示为空公式:=IFERROR(数字/数字,)说明:如果计算的结果错误则显示为空,否则正常显示。2、IF语句的多条件判定及返回值公式:IF(AND(单元格(逻辑运算符)数值,指定单元格=返回值1),返回值2,)说明:所有条件同时成立时用AND,任一个成立用OR函数。三、常用的统计公式1、统计在两个表格中相同的内容公式:B2=COUNTIF(数据源:位置,指定的,目标位置)说明:如果返回值大于0说明在另一个表中存在,0则不存在。如果,在此示例中所用到的公式为:B2=COUNTIF(Sheet15!A:A,A2)2、统计不重复的总数据公式:C2=SUMPRODUCT(1/COUNTIF(A2:A8,A2:A8))说明:用COUNTIF函数统计出源数据中每人的出现次数,并用1除的方式把变成分数,最后再相加。四、数据求和公式1、隔列求和的应用公式:H3=SUMIF($A$2:$G$2,H$2,A3:G3)或=SUMPRODUCT((MOD(COLUMN(B3:G3),2)=0)*B3:G3)说明:如果在标题行中没有规则就可以用第2个公式2、单条件应用之求和公式:F2=SUMIF(A:A,C:C)说明:这是SUMIF函数的最基础的用法五、查找与引用公式1、单条件查找说明:VLOOKUP是excel中最常用的查找方式六、字符串处理公式1、多单元格字符串的合并说明:Phonetic函数只能合并字符型数据,不能合并数值2、截取结果3位之外的部分说明:LEN计算总长度,LEFT从左边截总长度-3个七、日期计算相关1、日期间相隔的年、月、天数计算A2是开始日期(2011-12-2),B2是结束日期(2013-6-11)。计算:相差多少天的公式为:=datedif(A2,B2,d) 其结果:557相差多少月的公式为: =datedif(A2,B2,m) 其结果:18相差多少年的公式为: =datedif(A2,B2,Y) 其结果:1不考虑年份相隔多少月的公式为:=datedif(A1,B1,Ym) 其结果:6不考虑年份相隔多少天的公式为:=datedif(A1,B1,YD) 其结果:192不考虑年份月份相隔多少天的公式为:=datedif(A1,B1,MD) 其结果:9datedif函数第3个参数说明:Y 时间段中的整年数。M 时间段中的整月数。D 时间段中的天数。MD 日期中天数的差。忽略月和年。YM 日期中月数的差。忽略日和年。YD 日期中天数的差。忽略年。扩展资料:工程函数BESSELI返回经过修改的贝塞尔函数IN(X)BESSELJ 返回贝塞尔函数JN(X)BESSELK返回经过修改的贝塞尔函数KN(X)BESSELY返回贝塞尔函数YN(X)XLFCTBIN2DEC、BIN2DEC 将二进制数转换为十进制数BIN2HEX 将二进制数转换为十六进制数BIN2OCT将二进制数转换为八进制数COMPLEX 将实系数和虚系数转换为复数CONVERT 将一种度量单位制中的数字转换为另一种度量单位制DEC2BIN 将十进制数转换为二进制数DEC2HEX 将十进制数转换为十六进制数DEC2OCT 将十进制数转换为八进制数DELTA 检测两个值是否相等ERF 返回误差函数ERFC 返回余误差函数GESTEP 检测数字是否大于某个阈值HEX2BIN 将十六进制数转换为二进制数HEX2DEC 将十六进制数转换为十进制数HEX2OCT 将十六进制数转换为八进制数IMABS 返回复数的绝对值(模)IMAGINARY 返回复数的虚系数IMARGUMENT 返回参数THETA,一个以弧度表示的角IMCONJUGATE 返回复数的共轭复数IMCOS 返回复数的余弦IMDIV 返回两个复数的商IMEXP 返回复数的指数IMLN 返回复数的自然对数IMLOG10 返回复数的常用对数IMLOG2 返回复数的以2为底数的对数IMPOWER 返回复数的整数幂IMPRODUCT 返回两个复数的乘积IMREAL 返回复数的实系数IMSIN 返回复数的正弦IMSQRT 返回复数的平方根IMSUB 返回两个复数的差IMSUM 返回两个复数的和OCT2BIN 将八进制数转换为二进制数OCT2DEC 将八进制数转换为十进制数OCT2HEX 将八进制数转换为十六进制数参考资料:百度百科- excel函数

excel函数公式大全

excel常用公式函数有:IF函数、SUMIFS函数、COUNTIF、VLOOKUP函数,LOOKUP函数。1、IF函数IF函数一般是指程序设计或Excel等软件中的条件函数,根据指定的条件来判断其“真”(TRUE)、“假”(FALSE),根据逻辑计算的真假值,从而返回相应的内容。可以使用函数 IF 对数值和公式进行条件检测。语法IF(logical_test,value_if_true,value_if_false)功能IF函数是条件判断函数:如果指定条件的计算结果为 TRUE,IF函数将返回某个值;如果该条件的计算结果为 FALSE,则返回另一个值。例如IF(测试条件,结果1,结果2),即如果满足“测试条件”则显示“结果1”,如果不满足“测试条件”则显示“结果2”。参数(1)Logical_test 表示计算结果为 TRUE 或 FALSE 的任意值或表达式。例如,A10=100 就是一个逻辑表达式,如果单元格 A10 中的值等于 100,表达式即为 TRUE,否则为 FALSE。本参数可使用任何比较运算符(=(等于)、>(大于)、>=(大于等于)、<=(小于等于等运算符))。(2)Value_if_true表示 logical_test 为 TRUE 时返回的值。例如,如果本参数为文本字符串“预算内”而且 logical_test 参数值为 TRUE,则 IF 函数将显示文本“预算内”。如果 logical_test 为 TRUE 而 value_if_true 为空,则本参数返回 0。如果要显示 TRUE,则请为本参数使用逻辑值 TRUE。value_if_true 也可以是其他公式。(3)Value_if_false表示 logical_test 为 FALSE 时返回的值。例如,如果本参数为文本字符串“超出预算”而且 logical_test 参数值为 FALSE,则 IF 函数将显示文本“超出预算”。如果 logical_test 为 FALSE 且忽略了 value_if_false(即 value_if_true 后没有逗号),则会返回逻辑值 FALSE。如果 logical_test 为 FALSE 且 value_if_false 为空(即 value_if_true 后有逗号,并紧跟着右括号),则本参数返回 0(零)。VALUE_if_false 也可以是其他公式。2、SUMIF函数SUMIF函数是Excel常用函数。使用 SUMIF 函数可以对报表范围中符合指定条件的值求和。Excel中sumif函数的用法是根据指定条件对若干单元格、区域或引用求和。语法SUMIF(range,criteria,sum_range)1)range 为用于条件判断的单元格区域。2)criteria 为确定哪些单元格将被相加求和的条件,其形式可以为数字、文本、表达式或单元格内容。例如,条件可以表示为 32、"32"、">32" 、"apples"或A1。条件还可以使用通配符:问号 (?) 和星号 (*),如需要求和的条件为第二个数字为2的,可表示为"?2*",从而简化公式设置。3)sum_range 是需要求和的实际单元格。3、Countif函数Countif函数是Microsoft Excel中对指定区域中符合指定条件的单元格计数的一个函数,在WPS,Excel2003和Excel2007等版本中均可使用。该函数的语法规则如下:countif(range,criteria)参数:range 要计算其中非空单元格数目的区域参数:criteria 以数字、表达式或文本形式定义的条件4、VLOOKUP函数VLOOKUP函数是Excel中的一个纵向查找函数,它与LOOKUP函数和HLOOKUP函数属于一类函数,在工作中都有广泛应用,例如可以用来核对数据,多个表格之间快速导入数据等函数功能。功能是按列查找,最终返回该列所需查询序列所对应的值;与之对应的HLOOKUP是按行查找的。参数说明Lookup_value为需要在数据表第一列中进行查找的数值。Lookup_value 可以为数值、引用或文本字符串。当vlookup函数第一参数省略查找值时,表示用0查找。Table_array为需要在其中查找数据的数据表。使用对区域或区域名称的引用。col_index_num为table_array 中查找数据的数据列序号。col_index_num 为 1 时,返回 table_array 第一列的数值,col_index_num 为 2 时,返回 table_array 第二列的数值,以此类推。如果 col_index_num 小于1,函数 VLOOKUP 返回错误值 #VALUE!;如果 col_index_num 大于 table_array 的列数,函数 VLOOKUP 返回错误值#REF!。Range_lookup为一逻辑值,指明函数 VLOOKUP 查找时是精确匹配,还是近似匹配。如果为FALSE或0,则返回精确匹配,如果找不到,则返回错误值 #N/A。如果 range_lookup 为TRUE或1,函数 VLOOKUP 将查找近似匹配值,也就是说,如果找不到精确匹配值,则返回小于 lookup_value 的最大数值。如果range_lookup 省略,则默认为1。5、LOOKUP函数LOOKUP函数是Excel中的一种运算函数,实质是返回向量或数组中的数值,要求数值必须按升序排序。使用方法(1)向量形式:公式为 = LOOKUP(lookup_value,lookup_vector,result_vector)式中 lookup_value—函数LOOKUP在第一个向量中所要查找的数值,它可以为数字、文本、逻辑值或包含数值的名称或引用;lookup_vector—只包含一行或一列的区域lookup_vector 的数值可以为文本、数字或逻辑值;result_vector—只包含一行或一列的区域其大小必须与 lookup_vector 相同。(2)数组形式:公式为= LOOKUP(lookup_value,array)式中 array—包含文本、数字或逻辑值的单元格区域或数组它的值用于与 lookup_value 进行比较。例如:LOOKUP(5.2,{4.2,5,7,9,10})=5。注意:array和lookup_vector的数据必须按升序排列,否则函数LOOKUP不能返回正确的结果。文本不区分大小写。如果函数LOOKUP找不到lookup_value,则查找array和 lookup_vector中小于lookup_value的最大数值。如果lookup_value小于array和 lookup_vector中的最小值,函数LOOKUP返回错误值#N/A。另外还要注意:函数LOOKUP在查找字符方面是不支持通配符的,但可以使用FIND函数的形式来代替。扩展资料:Excel函数公式:4个必须掌握的实用查询汇总技巧一、多列查找。目的:查询对应的多科成绩。方法:1、在目标单元格中输入公式:=VLOOKUP($H$3,$B$3:$F$9,COLUMN(B3),0)。2、在目标单元格中输入公式:=VLOOKUP($H$3,$B$3:$F$9,MATCH(I$2,$B$2:$E$2,0),0)。解读:1、Vlookup函数的语法结构式:=Vlookup(查询值,查询范围,查询值在查询范围中的列数,匹配模式)。2、公式=VLOOKUP($H$3,$B$3:$F$9,COLUMN(B3),0)。用COLUMN(B3)来定位当前查询值在查询范围中的位置,其参数B3为可变值。3、公式=VLOOKUP($H$3,$B$3:$F$9,MATCH(I$2,$B$2:$E$2,0),0)用MATCH(I$2,$B$2:$E$2,0)来定位科目在查询范围中的相对位置,应为其初始值从0开始计算,故=MATCH(I$2,$B$2:$E$2,0)的范围从$b$2开始计算。二、按指定的条件汇总数据。目的:查询指定产品的销量总数或某产品在指定月份的销售额。方法:1、在目标单元格输入公式:=SUMPRODUCT(($C$3:$C$9="A1")*D3:D9)。2、在目标单元格中输入公式:=SUMPRODUCT((($C$3:$C$9="A1")*(MONTH($E$3:$E$9)=5))*D3:D9)。解读:1、SUMPROCUT函数的基本功能是:返回数组间对应元素的乘积之和。2、公式:=SUMPRODUCT(($C$3:$C$9="A1")*D3:D9)就是数组{1,0,1,0,1,0,1}和{90,98,12,45,98,67,100}对应乘积的和。暨:1*90+0*98+1*12+0*45+1*98+0*67+1*100=300。2、=SUMPRODUCT((($C$3:$C$9="A1")*(MONTH($E$3:$E$9)=5))*D3:D9)只是多了一个数组,对应的三个数相乘并求和。三、多条件求和汇总。目的:求“王东”对产品“A1”的销量。方法:1、在目标单元格中输入公式:=SUMIFS(D3:D9,B3:B9,"王东",C3:C9,"A1")。2、在目标单元格中输入公式:=SUMIFS(D3:D9,B3:B9,"王东",C3:C9,"A1",D3:D9,">50")。解读:1、SUMIFS函数是多条件求和函数。其语法结构为:=SUMIFS(求和范围,条件范围1,条件1,条件范围2,条件2……条件范围N,条件N)。四、隔列分类汇总。目的:对“计划”和“实际”进行汇总。方法:在目标单元格输入公式:=SUMIF($C$3:$F$10,H$3,$C4:$F4)。解读:1、函数SUMIF是单条件求和函数,其语法结构为=SUMIF(求和范围,条件范围,条件)。2、公式:=SUMIF($C$3:$F$10,H$3,$C4:$F4)采用的是绝对引用和相对引用相结合的方式,目的在于对参数进行动态变化。结合具体的值便于理解。

上一篇:爱奇艺随刻

下一篇:中石化邮箱登陆