地震勘探

时间:2024-05-22 17:47:15编辑:莆田seo君

地震勘探原理

地震勘探,指利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法。在地表以人工方法激发地震波,在向地下传播时,遇有介质性质不同的岩层分界面,地震波将发生反射与折射,在地表或井中用检波器接收这种地震波。收到的地震波信号与震源特性、检波点的位置、地震波经过的地下岩层的性质和结构有关。通过对地震波记录进行处理和解释,可以推断地下岩层的性质和形态。地震勘探在分层的详细程度和勘查的精度上,都优于其他地球物理勘探方法。地震勘探的深度一般从数十米到数十千米。爆炸震源是地震勘探中广泛采用的非人工震源。已发展了一系列地面震源,如重锤、连续震动源、气动震源等,但陆地地震勘探经常采用的重要震源仍为炸药。海上地震勘探除采用炸药震源之外,还广泛采用空气枪、蒸汽枪及电火花引爆气体等方法。地震勘探始于19世纪中叶。1845年,R.马利特曾用人工激发的地震波来测量弹性波在地壳中的传播速度。这可以说是地震勘探方法的萌芽。在第一次世界大战期间,交战双方都曾利用重炮后坐力产生的地震波来确定对方的炮位。

[create_time]2022-11-15 17:26:28[/create_time]2022-10-15 11:09:38[finished_time]1[reply_count]0[alue_good]上山打怪兽9u[uname]https://himg.bdimg.com/sys/portrait/item/wise.1.30b93437.qzUouUTPJcxfQVZ0j7L9zQ.jpg?time=7283&tieba_portrait_time=7283[avatar]TA获得超过371个赞[slogan]这个人很懒,什么都没留下![intro]468[view_count]

石油勘探中的地震勘探的原理是什么?

利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法叫作地震勘探。在地表以人工方法激发地震波,在向地下传播时,遇有介质性质不同的岩层分界面,地震波将发生反射与折射,在地表或井中用检波器接收这种地震波。收到的地震波信号与震源特性、检波点的位置、地震波经过的地下岩层的性质和结构有关。通过对地震波记录进行处理和解释,可以推断地下岩层的性质和形态。地震勘探在分层的详细程度和勘查的精度上,都优于其他地球物理勘探方法。地震勘探的深度一般从数十米到数十千米。地震勘探的难题是分辨率的提高,高分辨率有助于对地下精细的构造研究,从而更详细了解地层的构造与分布。 参考资料:http://baike.baidu.com/view/113888.htm http://wenku.baidu.com/view/9296896727d3240c8447efe3.html ,作者:陆基孟/王永刚,中国石油大学出版社

[create_time]2016-12-01 18:52:15[/create_time]2013-06-26 14:21:05[finished_time]1[reply_count]9[alue_good]邵文潮[uname]https://himg.bdimg.com/sys/portrait/item/wise.1.aaf12c80.Pj7TZmk7Sl4SMzi017BONw.jpg?time=3734&tieba_portrait_time=3734[avatar]TA获得超过4253个赞[slogan]这个人很懒,什么都没留下![intro]5068[view_count]

地震勘探仪器

SmartSolo节点仪器体积小、重量轻,HSE风险低;传统有缆设备含大线,体积大、携带繁重,HSE风险高;SmartSolo轻松实现大规模部署,省时、省力、省人、省事、省钱;有缆设备需要摆图形,易存在漏电等难题,部署繁琐。

[create_time]2021-03-26 04:36:43[/create_time]2020-02-05 04:57:39[finished_time]2[reply_count]0[alue_good]SmartSolo智能传感器[uname]https://gips0.baidu.com/it/u=1294711008,3424639245&fm=3012&app=3012&autime=1693902159&size=b200,200[avatar][slogan]这个人很懒,什么都没留下![intro]513[view_count]

地震精查主要用于哪一个勘探阶段

  地震精查主要用于油气藏评价勘探阶段。
  油气藏评价勘探阶段的工作程序 按照评价勘探工作的过程,可以分地震精查、钻评价井、油气藏评价三个步 骤。
  地震精查或三维地震 初探阶段要安排地震精查,测网密度要达到0.5km×1km 或0.5km×0.5km, 满足最终成图比例1:50,000 或1:25,000 的精度要求。 2).评价井钻探 油气田勘探复习 7 评价井是在已经证实有工业性油气的构造、断块或其他圈闭上,在地震精查 的基础上,为查明油气藏类型、评价油气田规模、生产能力以及经济价值为目的 的探井。


[create_time]2016-01-24 05:27:24[/create_time]2015-12-25 19:51:36[finished_time]1[reply_count]0[alue_good]莫彷徨2011[uname]https://himg.bdimg.com/sys/portrait/item/wise.1.62972a16.pMTMxABI484pCNXSaK_M9Q.jpg?time=3333&tieba_portrait_time=3333[avatar]TA获得超过1.6万个赞[slogan]这个人很懒,什么都没留下![intro]85[view_count]

地震勘探的地质条件

在一个地区开展地震勘探工作能否有效地解决地质问题,达到预期目的,在很大程度 上取决于该区的地震地质条件。地震地质条件分为表层地震地质条件和深层地震地质条件 两部分。(一)表层地震地质条件表层地震地质条件主要是指地表的各种影响因素及浅部岩土介质的性质和地质特征。具体是指地形、地貌、植被、潜水面、基岩以上现代沉积的岩性和厚度的变化等。它们决 定了地震波的激发和接收条件及资料处理中表层静校正的难度。一般说来,地形平坦、潜 水面浅、表层现代沉积厚度变化小、岩性稳定等是有利的表层地震地质条件。(二)深层地震地质条件深层地震地质条件是指地震界面的强弱、稳定性和连续性、地质构造的复杂程度、地 震界面与地质界面的对应关系等。地震界面的性质取决于地层的岩性——岩性稳定则地震 界面连续性好,可大范围追踪,并且与地质界面一致(此称标准层)。在剖面中有标准层,地质条件不太复杂、岩层产状较平缓、界面反射系数适中等都是有利的深层地震地质 条件。地震界面是指地震波速度不同或波阻抗有差异的界面;地质界面是指由于各种地质作 用造就的物性界面,如不整合面、地层面、岩性界面、断层面、侵入接触面以及流体分界 面等。上述两种界面,多数情况下是一致的,但有时是不一致的。如有些古老地层经多次构 造运动或在上覆地层的长期重压下,相邻地层可能有相近的波阻抗,这种地质界面就不是 地震界面。反之,同一岩性的地层,其中既无层面又无岩性界面,但由于岩层中所含流体 成分不同,而构成物性界面(例如水与气分界面,含油层与含气层的分界面,油层与水层 的分界面),因而地震反射面有时也并非地质界面。只有当地震界面与地质界面一致或有 密切关系时,地震勘探工作才能有效地解决地质任务。

[create_time]2020-01-15 21:33:13[/create_time]2020-01-30 21:14:57[finished_time]1[reply_count]1[alue_good]中地数媒[uname]https://iknow-pic.cdn.bcebos.com/38dbb6fd5266d0166fb0c0519b2bd40735fa3519?x-bce-process=image/resize,m_lfit,w_900,h_1200,limit_1/quality,q_85[avatar]技术研发知识服务融合发展。[slogan]中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命[intro]541[view_count]

 地震勘探

地震方法是目前我国用于水工环地质调查的主要物探方法。它通过研究人工激发和接收的地震波的运动学和动力学特征来调查地质问题。地震勘探的方法有近十种,以下仅对主要的方法——反射地震、折射地震、横波勘查、面波勘查、三维地震予以介绍。一、反射地震目前,反射地震是浅层勘查中得到最多应用的地震方法。虽然80年代它才在水工环地质调查中得到应用,但是在90年代初却已经形成比较完整的浅层反射地震技术系列。1.资料采集技术的改进(1)地震共中心点迭加(CMP)的野外资料采集中,需要大量的劳力埋置检波器。为了提高效率,降低成本,国外研究出了一种陆地检波器拖缆,使用万向接头,可以自动确定方向。在瑞士两个试验场地的应用成果说明,该设备在技术上解决了检波器与大地间的耦合问题,只二、三人作业,即可完成过去10余人的工作,并且能取得与原来一样好的效果。(2)最佳资料观测时窗的重新提出。1984年Hunter等提出的最佳资料观测时窗(OWT)技术,要求在选择炮检距、高通滤波器、检波器及震源时,应特别注重主要目标反射波的探测。该技术在促进当时反射地震的发展中起到了重要作用。在反射地震仪器、处理设备及技术均得到长足发展的今天,一些适合浅层地震工作的场地仍可以利用这种简单的方法来取得很好的浅层地质构造信息(当然,对目前应用OWT的技术背景已作了较大的改进),这样可以节省一笔可观的费用。为了引起地震工作者对OWT技术的重视,R.J.Whiteley等最近发表了1985~1986年期间,在评价曼谷周围地面沉降问题中,OWT所作出的重大贡献;重温它在评价世界上许多大城市面临的地面沉降问题中可以发挥的作用。2.具有指导意义的震源试验成果震源的选择对取得良好的浅层反射勘查成果非常关键。这是一个既重要而又往往被忽视的问题。为了给浅层地震勘查提供可选择震源的基本资料,多年来美国勘探地球物理学家协会(SEG)等机构相继组织了用多种震源在不同类型地质条件下的大量现场对比试验。这类试验的技术含量高,费用昂贵。专家们根据选择最佳震源的基本条件对试验成果作了评价。对今后地震实际工作具有重要指导意义的试验有:(1)在1986年新泽西州、1988年加利福尼亚州和1991年休斯敦的试验中,分别用多种震源做了对比试验。Richard D Miller等对以上三次试验成果作了简单的概括(表20-1)。表20-1 1986新泽西州、1988加利福尼亚州和1991年得克萨斯州试验对比(2)在前三次试验成果的基础上,1993年11月在美国田纳西州橡树林保留地作的震源试验与前几次的试验不同。本次试验用了脉冲和振动两类震源,探测目标深度比原来大,在不同的地质环境下试验。试验资料提供了125个点的CMP和垂直地震剖面的噪声测试资料,包括35种振动震源和4种脉冲震源。将频谱白化法用于资料处理后,IVI Mini-vib震源能提供最佳的图像,反射波连续、清晰;不用白化法处理,IVI Minivib和Bison弹性震源取得的资料比较一致。(3)用于高分辨率勘查的轻便振动系统。针对浅层工程物探中探地雷达深度达不到,而一般地震方法又觉得太浅的目标,最近推出了一种轻便、高分辨纵波电磁地震波振动系统。只需对系统产生的电磁信号作简单的调剂,就可以单独地控制穿透深度和分辨率。提供的代表不同地质、场地条件和探测目标的七组试验成果指出:①在有利条件下,目标埋深为10~30m时,最高分辨率可达到20cm;②在城市沥青环境中,很容易激发出高频能量;③对埋在松软土0.5~5m深的很小且离得很近的物体,在频率大于300Hz的情况下,探测到了明显的反射同相轴。3.资料处理及解释方法研究(1)将石油反射地震资料处理技术应用到浅震资料时,有许多问题需要研究。国内、外对这些问题做了比较深入探讨。如Linus Pasasa等已成功地将基尔霍夫深度偏移预迭加用于从德国一废物场地采集的浅层地震资料的处理。它简化了传统CMP的处理程序,只需对速度-深度模型作出评估和深度偏移预迭加,而不需要区分炮点资料中的反射波和折射波。用该种方法处理的资料在分辨率和信/噪比方面有了很大的提高。(2)采集浅层反射资料时,需要利用高频率和宽频带。但这样做会给后续工作带来麻烦,如地滚波的空间假频;错误地将处理后的空气波及空气耦合波当做反射波来解释;在CMP剖面上将折射波解释为反射波以及处理中带来的一些人为现象。Don W.Steeples等在浅层地震反射勘探的陷井研究中,对识别、回避或消除这些干扰作了详细的研究。4.仪器发展总趋势80年代,发达国家浅层地震仪器的道数只有24道或更少;仪器动态范围通常为60dB或更小;另外,只能同时对一、二组同相轴成像,只记录单分量信息,并且通常只能用一种方式分析纵波。目前,仪器有了较大地发展,利用96dB、48道(或更多)地震仪器的大学、研究试验室和承包商的数量正在一天天地增多。在不久的将来可能利用三分量设备记录三维信息,并且可以同时分析超过一种地震方式信息。国内仪器的发展现状同国外80年代末90年代初基本相同。国内正在开展一种地震仪器的综合技术服务,意在利用浮点模块将过去的多种国外及国内生产的定点地震仪作技术升级和功能增强,并将12道仪器扩展为24道。在80~90年代,国内曾引进一批国外的先进仪器;但是至今,96dB及48道的仪器在国内还未得到应用。5.应用领域拓宽近年来,反射地震方法的传统应用领域在不断扩大,探测的目标也越来越复杂。国内外在探测第四系厚度和基岩起伏、含水层和古河道,断层、裂隙带等地下构造,滑坡及落水洞,以及地表沉降等方面已经取得了丰富的经验。考虑到已有许多关于传统应用领域的资料可供参考,所以这里只对有代表性的新应用领域作一简单介绍。(1)为水资源管理提供资料。美国西雅图北皮吉特湾内一个小岛(特别是沿海地区)的人口迅速增长,水资源的数量和质量成了阻碍这种发展的最重要因素。科学的水资源管理方法取决于预测地下水准确模型的开发。而准确的模型则在很大程度上有赖于对地下水系统的几何形状的恰当评价。为了给该岛复杂地下水环境的管理模型提供资料,John H.Bradford等利用浅层地震反射剖面对该岛温带冰川沉积层中的浅部含水层做了调查。用迭代倾斜时差(DMO)速度分析对取得资料的速度结构作了分析,最终得到了一张质量得到很大改善的迭后深度偏移剖面。该试验说明,即使在复杂环境条件下,也可以利用反射地震为水资源管理提供有用的资料。(2)潜水面及饱和度与反射图像之间的关系的应用试验。精细的研究成果已经指出,潜水面并不是一个简单的地震界面,而是在非封闭含水层条件下的地下水带与毛细带的分界面。为了更好地了解水文地质意义上的潜水面和它的地震图像之间以及在不同湿度条件下地下界面与排水间的关系,Ram Bachrach等在海岸沙滩上利用高分辨率地震作了试验。试验结果指出,①可以对2m深左右的浅部潜水层反射面成像;②该反射面与水文地质上确定的潜水面不一致,地震波只对部分饱和也就是说仅对地层中过去的水流敏感;③可以直接利用孔隙沙内的地震速度反演饱和度。以上这些结果对利用浅震监测地下水力学动态很重要。比如在抽水期间如果需要监测潜水面变化时,地震响应将只受饱和带剖面而不受潜水面本身的控制。这一结论与Birkelo等在一次用高分辨地震监测抽水试验中的成果一致。在那次试验中发现潜水位的地震图像与上层滞水的水位系统及饱和带顶部相一致。另外,反射地震对饱和带成像的能力,对确定地下非均匀体的位置也很有用处。(3)提供研究古气象的资料。近年来,充填更新世冰川构造的沉积物对研究古气候已经越来越重要。在较小、封闭、盆状(或似碗状)构造中的沉积旋回能为研究古气候的变化提供有用的资料。1996年在德国北部Tostedt附近的这类构造上做了二维高分辨率浅层反射地震勘查。Tostedt构造内,30、40和50m深度的反射波与魏克塞尔冰期的三组间冰段之间的相关性很好,由弱反射波确定了该构造的底部(最大深度为70m)。发现Tosedt构造被埋在一个比它大许多、从前未预计到的具有相同形状的凹陷内。高振幅反射波确定了该凹陷的底部边界(深130m)。反射地震勘查资料确定了两个似碗状构造完整的冰川成因。二、折射地震折射地震是最早用于水工环地质调查的地震方法。由于野外施工需要大排列和强震源以及自身的灵敏度和分辨率不高等技术缺点,其应用的主导地位已逐渐被反射地震法取代。目前,对传统方法的改革和创新虽然不十分活跃,但也有了一些起色。折射地震仍不失为一种主要的物探方法(特别是在工程地质领域)。(1)传统应用领域包括重大项目选址(调查第四系厚度、基岩起伏、地下构造、岩土力学参数及岩性结构等),探测地下水位,为反射地震的静校正提供速度等。(2)在某些特殊地质条件下的新应用。当前,水工环地质的一些调查中,需要了解一二十米范围内目标的准确深度和几何形状。但是,在这样的深度内,①电法的分辨率一般达不到要求;②如果场地内存在良性导电材料,因雷达波的能量被大量吸收,使探地雷达的穿透能力达不到应有的深度;③当场地材料对反射地震高频信号具有强散射和滞弹性影响时,反射法赖以对目标准确成像的高频能量被大量吸收;再则,在10~15m目标反射波的时间(50ms)内,振源产生的噪音将构成对反射波的严重干扰;这样将使反射法的应用受到严格的限制。在上述情况下,折射地震能提供比其它物探方法分辨率更高的资料。已将折射地震用于瑞士北部这类与处置场地有关的调查,并且取得了良好的效果。(3)与其他地震方法组合应用。折射方法的优点是能提供较准确的地震波速度资料,但是不能提供地质构造的准确信息;而反射地震则能提供地质构造的详细信息。在目前的浅层调查中,出现一种将折射地震和反射地震结合起来使用的趋势。比如,虽然100~150ms是浅层的重点探测目标,但迭加的反射资料却往往在这段时间内得不到良好的效果;而由折射炮点道集中的波场推出的速度模型却能提供浅层构造的地层横向变化信息。这些速度模型可用于:①在不能可靠描绘反射波双曲线为迭加处理提供速度资料时,提供迭加所需的速度;②炮检距不大使反射双曲线的正常时差校正量较小时,提供层速度资料。已将从得克萨斯和新墨西哥州采集的浅层反射资料用折射模型提供的速度处理,处理后的资料及其解释成果的质量得到了提高。(4)一种解决折射地震盲区的新方法的应用。折射地震探查中的盲区问题一直困扰着地震工作者。历史上有不少的学者曾提出过一些解决办法,但这些方法在实际应用中都要受到一定的限制。结合一个金矿折射地震勘查中遇到的盲区问题,在Redprit提出的确定盲区最大厚度的基础上,地震工作者利用常规时距曲线的解释厚度和最大盲区厚度的差来表示盲层之上的尾矿的真实厚度。该成果资料与场地钻孔资料取得了一致。三、横波反射法横波是一种质点振动与波传播方向垂直的地震波。在横波勘查中,一般利用方向性振源激发地震波。在国外虽然有一些关于利用反射横波勘查的报导,但由于实际工作中很难将反射波从乐夫波(一种面波,在地震记录上的到达时间与横波相同)中分离出来,这成了反射横波法发展的致命弱点。不过,Bradiey J.Carr等人的新见解或许能给横波应用带来希望。他们在冰碛物的横波研究实例中,利用单个振电雷管激发出可供地震仪检测的横波;并且在地震记录中能将横波从面波中辨认出来。通过同一测线纵、横波实测资料的对比,发现横波CDP资料的垂直分辨率为1.5m,横波垂直剖面法(VSP)的分辨率为0.75m;即使这样,横波CDP的垂直分辨率也比纵波的(2.6m)高。他们得出结论,横波反射不但可用于非固结地质材料的调查,而且还能提供与场地冰碛物单元有关的构造关系的信息。四、瑞利波勘查瑞利波是沿地面传播的地震波,是面波中的一种。利用瑞利波勘查只有十多年的历史。瑞利波勘查方法可分为稳态法和瞬态法两种。美国最先提出瞬态模式的瑞利波勘查,但是未付诸实施。日本提出了稳态模式勘查,并与中国分头研制成功稳态仪器并付诸实施。在稳态瑞利波的研究方面,中国发展了多道仪器和井下防爆仪器,使瑞利波勘查在独头巷道的超前勘查中发挥了重要作用。通过理论和试验两方面的研究,在资料采集、处理和解释方面都取得了显著进展。这些进展包括:发现“拐点”和“之字型”异常为D-Vr曲线上地层界面的两种基本异常形态;根据单条曲线的形态,可以确定洞穴、裂隙、松软等地质异常的基本类型;获得了深达一二百米以上的实测资料。稳态瑞利波法已经成功地应用到许多大中小工程项目之中,解决了一些复杂的工程地质问题。在勘探深度、解释精度和空洞判断准确率方面都达到了较高水平。瞬态瑞利波法是一种近年来才用于实际勘查的比较新的物探方法。它用人工震源产生所需频率范围的瞬态激励,通过测量不同频率瑞利波的传播速度来探测不同深度(几十米以内)的岩土介质性质,进而推测岩石分层、断层、岩溶、洞穴等。该方法具有设备轻便、施工灵活、资料直观、精度高、受干扰小等特点。目前,在地基覆盖层、防空洞、路面厚度、煤矿井下掘进超前、巷底层间距、顶煤厚度及巷道的探测中,均取得了较好的地质效果,证明了瞬态瑞利波法具有较高的实用价值和良好的应用前景。在瑞利波勘查的研究中,李锦飞(1998)提出了多分量瑞利波勘查的技术思想和方法,并研制成功专用防爆型多分量瑞利波勘探仪器。通过用极化分析方法对瑞利波记录的多分量信号的研究,提出了用极化滤波提取有效瑞利波的方法,该方法在煤矿井下以及地面实际应用表明,与单分量法比较,多分量瑞利波勘查在信噪比、穿透深度和可靠性方面都有一定的提高,具有一定的发展远景。五、三维(3D)地震勘探过去十年中,浅层高分辨率地震已逐渐成为浅层勘查的重要工具。虽然单独利用2D资料也可以对简单连续地质特征填图,但是提供复杂反射体的大小和形状就比较困难。从近年国外推出的3D地震勘探的实例可以看到,3D资料具有这方面能力。但是,由于资料采集和处理比较困难以及费用昂贵等原因,3D地震还没能得到较多的应用。从目前国外对浅层地质调查不断增长的势头以及3D技术本身的实力来看,笔者认为在我国推广3D地震也只是时日的问题。为此,将有关的主要技术简介于下。(1)在规划3D地震勘探时,要准确定义勘查的主要目标。预计目标的最大和最小深度,横向范围要求的空间分辨率,探测浅、深部特征所需的最少迭加次数;最浅目标成图所需的炮-检距,浅、深部反射速度可靠分析所需的最大偏移距和方位角范围;尽力收集目标区的地质及以往的地震资料(如最佳震源能量和频率,检波器的大地耦合特征等)。(2)因为三维地震的复杂性及采集资料的数量巨大,所以不管其勘探规模如何,事前均需做以计算机为基础的设计。三维勘查的几何结构模拟使分配关键参数(如迭加次数,最大最小偏移、在单个CMP面积元内分配方位角和偏移距等)成为可能。(3)根据设计的要求确定勘查参数。Frank Buker等在3D地震试验中选择勘查参数的方法(勘查的目标深度都在50m以内)可供参考(表20-2)。表20-2 3D地震勘查资料采集参数的比较(4)资料采集方式。三维地震资料的采集方式根据对实施项目的估计来设计,一般包括互相平行的数条接受测线,检波器道数及间隔和线距根据估算确定;另外,需布置与接收线垂直,并互相平行的震源线。然后利用设置的检波器网接收每一震源的信号。为了使大多数的CMP面积元内有较多的小偏移距的纪录道,并能够对极浅(小于50ms)地层做可靠地成像和确定均方根速度,Frank等在最近试验中,在上述主采方式的基础上,又布置了第二采集方式予以补充。(5)资料解释。目前的解释还未摆脱二维资料解释的局限,存在着以下一些不足。比如在解释中,虽然引进了人机联作交互技术,但以系列密集垂直剖面和水平等时切片联合解释为基础的工作方法不能克服在断层组合上存在的多解性以及难于确定一些特殊异常体的位置等缺点。为此,煤科总院西安分院的程建远等结合煤矿三维资料解释的实际,从三维资料体积解释思路出发,提出了一种三维资料振幅切片解释的新技术。该技术可用于任意走向断层的解释,还可以用于一些特殊地质体直观、快速解释,空间分辨率较好。利用人机联作技术可以方便地勾绘to平均图,等高线和等厚线图。在三维振幅切片的提纯处理上,可引入航卫片图像的空间滤波和图像增强处理技术,用于获得更高的信噪比和空间分辨率。

[create_time]2020-01-19 03:53:05[/create_time]2020-02-03 03:42:35[finished_time]1[reply_count]1[alue_good]中地数媒[uname]https://iknow-pic.cdn.bcebos.com/38dbb6fd5266d0166fb0c0519b2bd40735fa3519?x-bce-process=image/resize,m_lfit,w_900,h_1200,limit_1/quality,q_85[avatar]技术研发知识服务融合发展。[slogan]中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命[intro]343[view_count]

地震勘探的基础知识

一、波动物理学基本概念在我们开始讨论地震波之前,有必要了解波动物理学的一些基本概念。一是波的传播速度,另一是波动所引起的位移的频率和大小度量。地震波形上的波峰与波谷与零点间的高度称之为振幅(图2-1-1),通常用A表示。一个地震波的能量E正比于振幅的平方。下面的几个重要方程可将地震波的频率与距离和时间联系起来。波长λ通常用来描述地下或其他介质中传播的波上两个连续波峰或者波谷之间的空间距离,频率f为两个连续波峰或者波谷之间的时间周期T的倒数,而波的传播速度v是频率和波长的乘积。环境地球物理教程图2-1-1 波动中名词概念与波形同相和反相示意图根据这些基本的关系,我们能够对一个地震记录进行有意义的分析和计算,特别是当地震记录由多道数据组成且检波器到震源的距离为已知的时候。求取地震波动问题的完整解需要用到波动方程,其一维形式如式(2.1.2)所示,其中u是波动所引起的位移,x是横向坐标:环境地球物理教程通过对其微分可以验证该方程一个特殊而有用的解的形式为:u=Asink(vt-x)。这里A为振幅,kvt是频率,-kx为相位。根据费马的最小时间原理,地震波从一点传播到另一点是沿着某一路径进行的,在该路径上波的传播时间最短。近地表地震技术通常研究的是离震源几米或更远一点地方的弹性变化情况,至少在实际应用中是这样。在离震源更近的地方,常常会发生塑性形变或者断裂,因此常规的地震分析方法并不总是适用。在弹性情况下,一个物体能够承受多次的变形而不发生永久的破损。当变形超过弹性限制时,损坏就会发生,或者是发生破裂(由断裂造成的破损),或者是渐渐地由塑性形变引起的不可恢复的损坏。为了我们研究地震波的目的,我们将假设除了离地震震源非常近的地方以外,其余处为弹性形变。二、地震波的种类地震波被分为两类:一类是体波,它是在地球内部沿着所有方向传播并可达到所有深度的波;另一类为面波,它的传播往往局限于地球表面下数个地震波长的范围内。因此两类波的应用和分析方法都不尽相同,其中体波通常用于资源勘探和地震观测的目的,而面波一般被认为是体波研究中的噪声,但有时也被用来进行层状地球性质的研究。1.体波(P和S波)图2-1-2显示了体波的传播路径,图2-1-3给出了体波在两层介质传播时间与距离关系的示意图。图2-1-2 体波传播路径示意图图2-1-3 体波在两层介质传播时-距示意图体波的两种形式是:压缩波(P)和剪切波(S)。P波在反射和折射地震勘探以及地震研究中有着广泛的应用。P波属于声波,因此它满足声学中一切物理定律,其在传播介质中的粒子振动方向与波的传播方向相同。P波的传播速度为:环境地球物理教程式中:K是体积模量;μ是剪切模量;ρ是波所传播介质的密度。要注意方程中的v是波的传播速度,它是一个标量,而不是物理学中通常的矢量。P波将引起波所通过介质的物质的瞬时体积发生变化,而不会引起物质的瞬时形状发生变化。常用介质的P波速度情况如表2-1-1所示。表2-1-1 常用介质的P波速度横波(S波)或者称为剪切波,其传播方向垂直于粒子运动的振动方向。由于其在相同的介质中的传播速度低于纵波的速度,有时也被称为次波。由于纵波与横波的传播路径相同,它们的速度的差异就使得可以利用纵横波的时差用来计算震源到观测站或记录站的距离。横波通过介质时并不改变介质的瞬时体积,而只改变介质的瞬时形状。S波通常用于浅层工程项目,特别是在井间观测以获得土壤和地基的剪切模量时。在地震勘探领域,横波比纵波的应用要少得多。但是由于某种原因,人们对面波的应用有着较强的兴趣,包括岩性确定、断裂探测以及流体含量的现场确定。S波速度的公式如下:环境地球物理教程由于流体没有剪切力,故其剪切模量为零。也就是说,横波在流体中不能传播。这个结果曾在1900年导致了地球内部液态核的发现。横波在流体内无法传播的事实使得人们有可能应用它(或缺少它)的情况来探测地下溶洞,但是到目前为止该领域的研究还没有出现令人满意的结果。横波同光非常相像,在发生反射或折射时会表现出极化的特点。特别是当它在含有断裂的岩石中传播时,在某一优势方向上通常会产生这种情况。这种情况是由于不同极化方向上的能量在介质中有不同的传播路径。在用来显示波不同种类的图2-1-4中,左边是在美国堪萨斯大学一个专门用于浅层地震实验的场地上用来福枪作为震源,100Hz检波器接收所获得的地震记录,可以看到P波和瑞雷面波比较明显;右边为在相同的场地上,利用锲形震源和水平检波器所获得的记录,可以看到S波和勒夫面波主导整张记录。P波与S波速度的比值在确定震源与接收器之间的岩性以及求取介质的物性常数方面有着重要的意义,包括在地震灾害研究和建筑地基的研究中都有应用实例。该比值有时也会在石油工业领域被用来区分砂岩和页岩。孔隙介质中的水对横波的速度影响很小,但对P波的速度影响却很大,这使得该比值在地下水的研究中十分重要。利用前面所分别给出的P波和S波的速度公式,我们可以得到:环境地球物理教程vP/vS值对于火成岩、变质岩以及大多数的硬质沉积岩,例如致密石灰岩和胶结紧密的砂岩来说通常为1.7左右。而对一些较软的岩石,比如页岩以及胶结差的砂岩,其比值可以达到2.0左右。对于未固结的沉积物来说,比如河流三角洲以及漂砾石等,其比值在2.0到7.0之间变化。图2-1-4 波的不同类型示意图对于土木工程和地质工程来说,泊松比(σ)是一个非常重要的参数,它同vP/vS比值的关系为:环境地球物理教程泊松比对石灰岩、硬质砂岩和很多火成岩和变质岩来说,其值大约为0.25左右,对未固结的沉积物来说,其值可高达0.45。有些地区的地震波的场地放大效应可以用近地表地质层的泊松比平面等值线图来预测。2.面波当人们要利用体波进行地球内部勘探时,面波在大多数情况都被认为是一种噪声。在某些情况下,它甚至使体波方法实验不能被有效地开展,特别是当使用老式地震仪器时。由于地震面波大部分是在地球表面下一个波长的范围内传播的,因此当在地表进行记录时,地震记录上的最大振幅往往就是地震面波。地震面波在地震勘探领域的另一个名称叫做“地滚波”,这是因为在地震爆炸震源的附近人们可以有其在地面滚动的感觉。瑞雷波和勒夫波是大多数物理情况下产生的面波。根据科学文献,我们通常所见到的面波速度约为其横波速度的92%,这只有在泊松比为0.25时(这在一些硬的岩石中,比如花岗岩、盐岩、石灰岩等岩石中是很典型的)才真正成立。对于泊松比为零的情况,面波的速度为横波的87.4%,而对于泊松比为0.5时,面波的速度则等于横波速度的95.5%(Grant and West,1965)。对于未固结的物质来说,泊松比的范围一般在0.40到0.45之间,瑞雷面波的速度是未固结物质横波速度的94%的假设是正确的,其误差不会超过1%。上述两类面波传播时往往局限在浅于一个面波波长的体积范围内。因为长波长的面波传播深度较大,而那里的传播速度通常也比较大,因此可以说波长越长的面波其传播速度也越大,或者至少说它以同短波长面波不同的速度传播。由于不同波长的面波以不同的速度传播,它们从震源向外扩散趋向于随着时间变化,其传播距离越来越远。这种扩散方式通常被称为频散现象,面波在大多数情况下其实就是一种典型的频散波。对于最简单的瑞雷面波,当在一个半无限的各向同性空间的表面上观测时,其传播速度只同介质的物性有关,也就是说是无频散的。当遇到层状介质或者速度梯度介质时,瑞雷面波的速度将依赖于瑞雷面波的波长。因此,面波的频散比较弱就表明地下的成层性较差。瑞雷面波的粒子运动形式是一个逆向的椭圆轨迹,它同湖面上微波泛泛时鱼漂的运动很相似。勒夫面波其实就是局限在近地表地层内的多次反射的横波。它们需要在地表下有一个供其传播的低速层。实际上,正是这个勒夫面波的干涉,才使得近地表的横波勘探工作很难开展。从理论上来说,当存在一个近地表高速层覆盖在一个低速层的情况下浅层横波勘探应该能取得较好的效果,因为这时勒夫面波的干涉将不会存在。应用面波来作为近地表地震勘探分析的信息来源的潜力应该说还是很大的。这是因为在大多数情况下,地震勘探都是把面波作为噪声来处理,因此很少来分析面波中到底都包含了那些地学信息。从这个意义上来说,在这个领域是有可能作出一些创新性工作的。在过去的十年里,该领域的工作主要集中于发展了一种被称为“面波谱分析”(SASW)的技术,它主要是由美国得克萨斯大学和密执根大学的土木工程师提出来的。应用这种SASW技术,人们可以通过正演模型或者通过对面波速度的反演来获得近地表地下物质的刚度系数剖面。对不同频率范围的瑞雷面波进行分析,就可以得到深度信息。最近美国堪萨斯大学的地球物理学家也提出一种被称为“多道面波分析”(MASW)的技术(Park J.,Xia J.,1999),它与SASW所不同的地方在于应用了多道地震记录,一方面提高了用于获取频散曲线的频率扫描精度;另一方面由于其观测系统与地震反射方法一样,还可以同地震反射勘探同时进行。三、层状介质中的地震波上面的讨论中,大多数情况是假设地下介质是一个半无限弹性空间,这种情况下的波的传播是比较简单的。层状介质中的地震波传播情况是不同的,而且相对于非层状介质来说是比较复杂的。比如说,勒夫面波需要层状介质的存在,瑞雷面波只有当某种层状特性存在时才会有频散特性。另外地震反射只有当遇到地层界面时才会发生。当界面存在时,我们就会遇到频散现象、地震折射、地震反射和勒夫面波。另外,有时还可以看到不同类型的波在地质界面上发生转换。在理想的情况下,我们希望通过地震方法能够像图2-1-5所描绘的那样揭示地下的地质情况。但实际上,我们借助于解释模型只能近似的得到地下介质的部分物理性质。1.近法线入射时的反射为了方便起见,我们将假设在下面的讨论中,地震波在地下某个深度的水平界面上发生垂直反射。这种假设对于入射角或反射角为15 °以内的地震反射射线来说并不太坏。对于较大入射角的情况,可以利用反射矩阵的托布尼兹方程求解来获得反射波、透射波以及转换波的相对振幅。图2-1-5 地质模型与所对应的地震记录响应示意图通过界面的地震波能量将取决于界面的声学性质差异。一个特定地层的速度和密度的乘积被称为该地层的声阻抗Z环境地球物理教程一个声学界面的法线入射反射波的强度取决于其同界面声阻抗有关的反射系数R:环境地球物理教程这里ρ1和v1分别是第一层(界面上方)的密度和层速度,而ρ2和v2分别是第二层(界面下方)的密度和层速度。法线入射时的反射波极性和振幅可以从反射系数中看出。如果第一层的声阻抗比第二层的声阻抗大,那么返回到地表的地震反射将发生极性反转,比如石灰岩覆盖在页岩之上的情况。由于极性的反转使得地震反射数据的解释变得更加困难。从图2-1-6可以看出,一个典型的地震记录上的波峰数目并不等于地下反射层的数目。图2-1-6 四个地质层的反射系数序列与单道地震响应示意图另外还应注意,如果地下的第二层是空气,比如说地下充满空气的空洞(密度在这里几乎为零)的情况,全反射将会发生,而且极性将发生反转。同时从式(2.1.8)也可以看出,如果第一层的波阻抗等于第二层的波阻抗,反射就不会发生。例如在一套页岩层中,有一个明显的颜色变化,这同一种特定的标志化石的消失正好对应。地层学家就有可能将其划分为两个不同的地层,而由于这两层的波阻抗是相同的,事实上也确实是这样,因此在地震解释上,这一套页岩就是一个地层。反射地震有着其本身的局限,而这只是其中之一。当地震波是垂直入射到一个界面时,它将不是发生反射就是发生透射。根据能量守恒定律,反射和透射的总能量必须等于入射的总能量。除了反射系数之外,透射系数可以用下面的公式来计算:环境地球物理教程图2-1-7到图2-1-9显示了当速度发生变化而且不是垂直入射时,地震射线路径所受到的影响。图2-1-10为一个简单的两层介质(速度递增模型)中折射波的射线路径草图。另外图2-1-11还显示了某一单一反射的传播时间随着炮检距变化而变化的理论观点。从时距曲线上来看,该反射同相轴表现为一个双曲线。这个随着距离变化而发生的传播时间差异就是人们所熟知的“正常时差”(NMO)。2.波型转换与广角反射当震源激发后,地震能量从震源处向各个方向辐射。其中有些纵波的能量在声阻抗界面被转换为横波。这种从一类波型转为另一类波型的现象被称为“波型转换”,这种情况当检波器的炮检距相对于反射层的深度较大时比较普遍。在地震纵波的总场中包括了非近法线入射时在声阻抗界面发生的反射。通常至少有下列的六种情况可以发生:①反射角等于入射角的返回到地面的反射纵波;②根据斯奈尔定律以首波方式沿着速度界面传播到地面的折射纵波;③通过界面进入下一地层的透射纵波;④由于波型转换从纵波而成为的反射横波;⑤发生波型转换并遵从斯奈尔定律以首波形式沿界面向上传播的折射横波;⑥透射纵波在界面上发生波型转换并以横波形式在下一地层中传播的波。图2-1-7 基岩上覆冲积层简单地震反射路径示意图图2-1-8 基岩上覆粘土层和砂层的速度向下递增模型的地震反射路径示意图图2-1-9 基岩上覆砂层和粘土层的中间低速模型的地震反射路径示意图图2-1-10 速度递增模型的地震折射路径示意图上述这6种类型的波的振幅可以从托普布尼兹方程中求得,该矩阵具有相当复杂的三角对应关系。这些方程的推导和讨论可以在很多的高级地震教科书中发现。四、地震能量损耗的机制当地震波从一个地方传播到另一个地方时,有几件事情要发生,它包括反射、波型转换、折射,这些都已经在前面简要地提起过。其他的损耗机制还包括几何扩散、衰减和随着传播距离增大的频散。图2-1-12给出了一个人工形成的地震波的传播距离同地震波频率的关系。这些影响地震波传播距离的几个因素将要在下面进行讨论。图2-1-13图示性地给出了地震波损耗的影响因素。图2-1-11 简单水平双层的多道地震反射路径与时间记录示意图图2-1-12 体波传播距离与其频率的对应关系对于大多数的震源来说,其振幅谱通常是未知的。这时由于很难测定像在瞬间引爆的高能炸药附近的剧烈运动情况。同时,脉冲型的震源比如重物落锤、人工锤击、枪弹射击等会在地下的某个体积内产生塑性形变。而在这个体积内,常规的波动传播理论并不成立。因此,我们这里所讨论的损耗机制是在这个塑性形变区域之外的。塑性区域内的能量损耗机制我们这里将不涉及,因为在过去的文献中,这个问题的研究也不多见。如果我们从一个震源向外观察,波动的能量辐射像是一个半径随时间线性增加的圆球,其波前面上的能量密度将会以1/R2衰减。因为能量是正比于振幅的开方,振幅将以1/R的因子随着球面扩散而衰减。在面源的情况下,能量是集中于一个半球形的波前面上,而不是球形面。这在理论上可以说其具有比点源的初始振幅大两倍的特点,但衰减速率将依然是正比于1/R的。这种衰减效应被称为球面扩散,或者几何扩散。作为另一种几何扩散的例子,我们考虑一个石子投入湖水的情况。这个波前是一个圆环形而不是一个半球面。因此波前上的能量密度将以1/R衰减,振幅将以衰减,而不是地球内部时的1/R。面波的情况就同投石于水中一样,它也是一个二维问题。因此面波就有着一个体波所不具有的随着传播距离增加,而相对振幅衰减不大的优越性。对于反射波来说,将发生一种另外的也是明显的能量损耗。对于垂直入射的情况,我们已有公式(2.1.8)来表述反射系数。在大多数情况下,反射系数大约在0.1 到0.3 之间。这也就是说,有70%到90%的地震波能量将穿过界面而不作为反射能量立即返回地面。如果能量入射到界面的角度偏离法线较大时,其影响的好坏将取决于前面所提到的托布尼兹方程的计算结果。图2-1-13 多个影响地震振幅的因素示意图另一种能量损失是由衰减所引起,尽管衰减的机制到目前还有争论。但其对于必须面对它的人们来说并不十分重要,这是因为我们在任何情况下,还无法控制地震波在地球内部物质发生的大范围衰减。另外也是由于广义上测量衰减的技术同衰减的机制关系不大所致。通常情况下,地震波在地球内部物质的衰减遵循下列衰减方程:环境地球物理教程这里A0是在某一任意距离上测量的参考振幅,α是衰减因子,Ax是在距离x上的振幅。由于衰减同频率有关,它通常用波长λ来表示,因此字母Q或者“品质因子”有下列显式:环境地球物理教程表2-1-2 常见物质的Q值上式中Q是一个无量纲的数值,有时也被称为吸收系数。较高频的信号由于波长较短,因此从公式上可以看出高频信号衰减的就快。Q的倒数表示波在传播的一个波长距离后的能量衰减部分。比如,淤积物质实际上的Q值大约为10。它表明有10%的能量在其每个波长的传播过程中消失了。注意,这并不是说所有的能量将在传播10个波长的距离后消失。而是对于每一个传播的波长来说,剩余的能量的10%将消失。常用的Q值如下面的表2-1-2所示:在前面我们曾提到面波是具有频散性的。频散当某些不同波长的信号以不同的速度传播时就会发生。这种情况往往是在传播的路径上有与波长相比拟的异常或者特征存在时发生。比如,一个竖直高度为3m的废弃煤矿坑,将会影响波长为1m左右的信号。同样地,波长为100m左右的波是不会受到这类异常影响的。然而,该异常能使得对应于波长100m的波到达时间与那些波长1m的波的到达时间有所不同,因而引起频散。另外一些干涉现象也能引起原始地震记录或者处理后数据的信号形状产生差异。它们包括多次反射、波型转换、绕射以及散射等。另外在浅层反射地震记录上,还有直达波、声耦合波(空气中传播的声波)与折射波、面波的干涉效应影响。五、地震分辨率地震学家必须面对地震信号强度随着距离衰减的问题。我们必须在力学定律、信息理论以及电子学所能达到水平等方面的限制范围内开展工作。近地表的有些能量损失可以通过诸如合理埋置检波器、深挖激发井,或者选择合适的采集日期以避免人文与气候条件所引起的噪声来解决。在其他情况下,我们可以通过使用好的地震仪,更多的道数以及改进采集参数等办法来提高分辨率。有时在信号进入大线之前采用多个检波器串联在一起以提高电压也是一个解决办法。使用地震方法目的是了解地球内部一定体积物质的特性。不管信号可能有多强,分辨率都将受到几何条件和信息理论的限制。这些限制也许就像我们用常规光学显微镜看不见物质中的原子和分子一样,这是因为光的波长太长使得我们难以探测到分子水平的变化。在大多数的情况下,地震震源和检波器均布置在地表或者近地表。信息以波动的形式向下发射并遵循物理学定律和实际上应用的信息理论。信息理论的一些基本定理将在下面予以简单介绍。从地震的术语来说,我们称“子波”为一个包含数个周期的地震脉冲(Sheriff,1991)。Sheriff还定义了“基本子波”(basic wavelet)的概念,就是法线入射时从单个反射界面(反射系数为正)上所反射的时间域波形。他定义时间分辨率为区分两个十分接近信号性质的能力。为了获得最佳的分辨率,我们需要一个延续时间尽可能短的子波,以便与从相邻的声学界面上反射的子波之间没有干涉(图2-1-14)。对于提供最佳分辨率的Sheriff所定义的子波来说,它必须具有尽可能少的周期个数。换句话说,我们通过提高频率而得到高分辨。然而,有时我们为得到高频所付出的代价是子波中的周期个数增加,它使得波形出现Sheriff称为“振荡”的现象。从信息理论的观点来看,最佳分辨率是通过数据的宽频带来实现的。也就是说,数据中应包含很多的不同频率的信息,而不仅仅是高频。理想分辨率可以通过一个纯脉冲——没有延续时间的能量脉冲来实现。尽管这样的震源是不可实现的,但对于很多地震应用来说,小炸药爆破可以获得近似的效果。爆炸震源的子波脉冲宽度反比于频率带宽。也即频带越宽,分辨率越高。根据我们前面对分辨率的定义,Sheriff,R.E.(1991)给出了一个“可分辨极限”的概念。“人们能够判定多于一个反射层的最小距离,其值取决于所判定的标志。瑞雷分辨率极限是λ/4,这里λ是主频信号的波长。”Widness(1973)通过分析两个反射层的反射子波开始互相干涉引起波形形状变化的情况给出了一个λ/8的极限。Sheriff(1991)也定义了一个“可探测极限”的概念,它是指在背景上能够反映出反射的一个层的最小厚度。它有时近似地选取主频信号波长的1/30作为标准。图2-1-14 显示薄层地震反射记录分辨率的模型与合成地震记录为了能够检测出一个夹在两个厚层之间的薄层,如果有必要的话,我们可以考虑使用高频而牺牲带宽。在这种情况下,数据可能会出现振荡。但这没有关系,因为仅对这一薄层有兴趣,此时人们对噪声的容忍程度要比平时多个反射层的情况高很多。高分辨率地震反射数据通常含有比在地震勘探中认为正常的剖面要多得多的噪声。一个高分辨地震数据处理公司的负责人曾说过,“如果你是将地震剖面出售给石油钻井的人,你就不要拿出高分辨的,因为它看起来噪声太大。但如果你是在考虑将自己的钱投入其中,那么你就会要最高分辨率的数据,尽管它看起来噪声很大。”我们前面将注意力主要集中于时间和频率的分辨率方面。现在我们将从空间分辨率方面进行讨论。为了描述反射地震的基本概念的目的,我们将利用射线理论结合平面波和回声经验来阐述。实际上,地震波能量是以波的形式传播的并完全遵守波动理论。因此,从许多方面来说,光理论是要比射线理论更接近地震波的物理概念。入射到一个反射层的地震能量并不是一个点上反射的,而是从地下的一个区域上反射的,这个区域通常被称之为菲涅尔带。所计算出来的第一菲涅尔带的尺寸可以被用来作为水平分辨率的估计。尽管这个带宽和高分辨数据的分辨率要小于其主频的第一菲涅尔带的尺寸,但重要的是从相对意义上来说,水平分辨率是正比于第一菲涅尔带的大小的。第一菲涅尔带是一个反射层的一部分区域,在这个第一反射能量的二分之一波长内其反射能量可以到达检波器(Sheriff,1991)。这个定义假设了波前的传播满足惠更斯原理,而不是射线理论。在这种假设下,入射角和反射角也许略微不同。从我们在地震记录上可以测得的参数来考虑,第一菲涅尔带的半径可以由下式来计算:环境地球物理教程这里R是从地表到反射层的距离,v是地震波速度,f是我们所感兴趣的频率。而T0则是反射层与地表之间的双层旅行时。进一步地我们可得到第一菲涅尔带半径r的表达式:环境地球物理教程一般来说水平分辨率要比第一菲涅尔带半径要小一些。Sheriff(1991)建议用该半径除以2的平方根作为分辨率的值,它至少给出了一个与水平分辨率同一数量级的参考值。

[create_time]2020-01-19 21:13:53[/create_time]2020-02-03 21:07:12[finished_time]1[reply_count]0[alue_good]中地数媒[uname]https://iknow-pic.cdn.bcebos.com/38dbb6fd5266d0166fb0c0519b2bd40735fa3519?x-bce-process=image/resize,m_lfit,w_900,h_1200,limit_1/quality,q_85[avatar]技术研发知识服务融合发展。[slogan]中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命[intro]258[view_count]

地震地质条件

在一个地区利用地震勘探方法能否取得好的地质(勘探)效果,在很大的程度上是取决于地震地质条件。地震地质条件一般分为两类:①表层地震地质条件;②深部地震地质条件。不同盆地的地震地质条件通常是不相同的,就是同一个盆地的不同地段,其地震地质条件也常常是不同的。掌握、分析和解决复杂的地震地质条件问题是地震勘探中的基础工作。1.7.3.1 表层地震地质条件表层地震地质条件包括地形、地表风化层的性质等因素。它不仅影响地震勘探的激发和接收,而且影响地震波的运动学和动力学特点,严重影响地震剖面的精度。地壳的风化壳也称为低速带。它是由于受到长期风吹、日晒、雨淋等地质风化作用而形成的,其岩石变得十分疏松。所以低速带的特点是:①低速带一般是指不含水的风化层,当风化层含饱和水后,其速度会增高,就不属于低速带范围,这也是地质风化层与低速带的差别;②低速带的速度V0是极低的,一般小于1 500m/s,而且速度横向变化较大;③低速带的厚度常常是不均匀的;④由于V0<<V(下覆岩石速度),根据Snell定律出射角β是很小的地震勘探原理、方法及解释↓V>> V0β<<α由于炮检距(OS)相对于勘探深度z是较小的,通常α也不太大,则β就更小。因此,在地表附近纵波的位移几乎是垂直于地面,横波的位移则近似于平行于地面。由于这个原因,在纵波勘探中,接收系统必须为垂直运动的检波器。横波勘探则应设计水平运动的检波器。由于低速带存在,要影响地震波的运动学和动力学特征;一是影响波的传播时间,甚至影响到最后地震剖面成像和地质构造形态;二是影响地震波的频带和能量,改造地震波的动力学特征;三是容易产生多次波,增加地震反射记录的复杂性。因此,地震勘探中的低速带校正和补偿已成为地震数字处理中难度较大的,但又是极为重要的问题。1.7.3.2 深层地震地质条件它通常是指地下地质构造的复杂程度。在一些复杂的断、陡构造地区,常常得不到好的地震资料,也无法弄清楚地下的真实形态。所以,地下构造的复杂程度不仅影响地震勘探工作方法的选择,而且影响地震资料的处理和解释。一般而言,要取得好的勘探效果,地下具备以下几方面的地震地质条件对提高勘探质量是有利的:①具有地震层位和地质层位的一致性;②具有较好的标准层;③具有良好的地层波组关系;④具有明显的地震相特征;⑤速度变化具有一定的稳定性。

[create_time]2020-01-15 22:25:53[/create_time]2020-01-30 22:21:06[finished_time]1[reply_count]1[alue_good]中地数媒[uname]https://iknow-pic.cdn.bcebos.com/38dbb6fd5266d0166fb0c0519b2bd40735fa3519?x-bce-process=image/resize,m_lfit,w_900,h_1200,limit_1/quality,q_85[avatar]技术研发知识服务融合发展。[slogan]中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命[intro]1024[view_count]

上一篇:地震资料

下一篇:帝国霸略