并集的概念是什么?
并集就是把两个集合合并在一起组成的集合。现有集合A和集合B,把他们所有的元素合并在一起组成的新集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。集合A与集合B的并集中所有元素都可以在集合A或集合B中找到,不存在这两个集合没有的元素。代数性质并集运算满足交换律,即集合的顺序任意。空集是并集运算的单位元。 即 ∅ ∪A=A。对任意集合A,可将空集当作零个集合的并集。结合交集和补集运算,并集运算使任意幂集成为布尔代数。 例如,并集和交集相互满足分配律,而且这三种运算满足德·摩根律。 若将并集运算换成对称差运算,可以获得相应的布尔环。
数学的并集与交集是什么意思?
并集:是指将不同集合的所有元素合并在一起所组成的集合,符号为∪。交集:是指两个集合中由既属于共同两组的元素所组成,符号为∩。并集和交集都满足交换律和分配律。并集和交集的性质在学习的过程中,一般来说是非常重要的,需要学生熟练掌握和运用。例如交集的性质有A∩A=A,A∩B=B∩A等。并集的性质有A∪A=A,A∪∅=A,A∪B=B∪A等等。 若A∩B=A,则A∈B,反之也成立; 若A∪B=B,则A∈B,反之也成立。 若x∈(A∩B),则x∈A且x∈B; 若x∈(A∪B),则x∈A,或x∈B。
并集和交集的区别是什么?
交集和并集有何区别是。含义不同。 并是加的意思,两个集合的所有元素组成的集合是两个集合的并集。 交是公的意思,两个集合中的公共元素组成的集合是两个集合的交集。表示不同。 并集,以属于A或属于B的元素为元素的集合称为A与B的并集,记作A∪B或B∪A,读作“A并B”或“B并A”。性质不同。 并集是 两个或多个集合 所有的元素,重复的只取一个,组成的集合,交集是两个或多个集合共有的元素 组成的集合。学好交集并集方法学数学要会看书和查缺补漏。数学基础考点都来源于课本,大家之所以觉得书没什么可看,是因为对教材掌握程度不够。书上的每个定义都要理解后倒背如流,深究每个词语的含义,做懂每个例题,会推导数学公式及变形公式。做数学题目方法不唯一,只要是逻辑合理、能一步步推导出结论的方法都可以,不必拘泥于老师讲授的方法。做数学小题也可以采用画图、试值法、代入法等去做,只要沉下心去研究,功夫不负有心人,数学总能够学好。
如何理解交集、并集、补集、差集的概念?
P(A∪B∪C)=P(A)+P(B)+P(C)- P(AB) - P(BC) - P(CA)+P(ABC)。交集用“∩”表示,交的是两者的相同部分,如:A={1,2,3,4},B={3,4,5,6},则AB的交集即A∩B={3,4}并集专用“∪”表示,并的是二者的属所有元素,如上例,则AB的并集,即A∪B={1,2,3,4,5,6}注意集合中不能有重复的元素。扩展资料:推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1推论3:若B包含A,则P(B-A)= P(B)-P(A)推论4(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(A∩B)条件概率,记作:P(A|B),条件概率计算公式:当P(A)>0,P(B|A)=P(AB)/P(A)当P(B)>0,P(A|B)=P(AB)/P(B)乘法公式P(AB)=P(A)×P(B|A)=P(B)×P(A|B)推广:P(ABC)=P(A)P(B|A)P(C|AB)
什么是交集和并集?
并集和交集的区别有性质不同、本质不同、表示不同。1、性质不同交集是不同的事物或感情聚集或交织在一起;并集是两个事物所包含的共有。数学上,一般地,对于给定的两个集合A和集合B的交集是指含有所有既属于A又属于B的元素,在集合论和数学的其他分支中,一组集合的并集是这些集合的所有元素构成的集合,而不包含其他元素。2、本质不同交集是交叉;并集是加。交集是两个集合有共有的部分,但是表示全部工有。并集即两个集合合并起来,形成一个共有的集合,形式上如x属于A∩B当且仅当x属于A且x属于B。3、表示不同A和B的交集写作"A∩B",A∩B= {x| x∈A且x∈B} ; A和B并集写作“A∪B”,即A∪B={x|x∈A,或x∈B}。交集的运算(1)若两个集合A和B的交集为空,则说他们没有公共元素,写作:A∩B = ∅。例如集合 {1,2} 和 {3,4} 不相交,写作 {1,2} ∩ {3,4} = ∅。(2)任何集合与空集的交集都是空集,即A∩∅=∅。(3)更一般的,交集运算可以对多个集合同时进行。例如,集合A、B、C和D的交集为A∩B∩C∩D=A∩[B∩(C ∩D)]。交集运算满足结合律,即A∩(B∩C)=(A∩B) ∩C。(4)最抽象的概念是任意非空集合的集合的交集。若M是一个非空集合,其元素本身也是集合,则 x 属于 M 的交集,当且仅当对任意 M 的元素 A,x 属于 A。这一概念与前述的思想相同,例如,A∩B∩C 是集合 {A,B,C} 的交集(M 何时为空的情况有时候是能够搞清楚的,请见空交集)。这一概念的符号有时候也会变化。集合论理论家们有时用 "∩M",有时用 "∩A∈MA"。后一种写法可以一般化为 "∩i∈IAi",表示集合 {Ai|i ∈ I} 的交集。这里 I 非空,Ai 是一个 i 属于 I 的集合。
数学中,什么叫并集?
1、并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 。2、交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}3、补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}。扩展资料一、交集运算(1)若两个集合A和B的交集为空,则说他们没有公共元素,写作:A∩B = ∅。例如集合 {1,2} 和 {3,4} 不相交,写作 {1,2} ∩ {3,4} = ∅。(2)任何集合与空集的交集都是空集,即A∩∅=∅。(3)更一般的,交集运算可以对多个集合同时进行。例如,集合A、B、C和D的交集为A∩B∩C∩D=A∩[B∩(C ∩D)]。交集运算满足结合律,即A∩(B∩C)=(A∩B) ∩C。(4)最抽象的概念是任意非空集合的集合的交集。若M是一个非空集合,其元素本身也是集合,则 x 属于 M 的交集,当且仅当对任意 M 的元素 A,x 属于 A。这一概念与前述的思想相同,例如,A∩B∩C 是集合 {A,B,C} 的交集(M 何时为空的情况有时候是能够搞清楚的,请见空交集)。二、并集的性质A∪B,B A∪B,A∪A=A,A∪∅=A,A∪B=B∪A若A∩B=A,则A∈B,反之也成立;若A∪B=B,则A∈B,反之也成立。若x∈(A∩B),则x∈A且x∈B;若x∈(A∪B),则x∈A,或x∈B。三、补集运算(1)∁U(A∩B)=(∁UA)∪(∁UB),即“交之补”等于“补之并”;(2)∁U(A∪B)=(∁UA)∩(∁UB),即“并之补”等于“补之交”参考资料:百度百科—交集
集合的交集与并集是什么意思?
交集:表示方法∩,意思是两个集合中相同的元素,记忆方法:交集的符号就是一个圆拱门。并集:表示方法∪,意思是取两个集合的全部元素,记忆方法:并集的符号就是门倒过来。举例:(1)集合{1,2,3}和{2,3,4}的交集为{2,3}。即{1,2,3}∩{2,3,4}={2,3}。(2)数字9不属于质数集合{2,3,5,7,11, ...}和奇数集合{1,3,5,7,9,11, ...}的交集。即9∉{x|x是质数}∩{x|x是奇数}。运算交集的运算形状:①A∩B=B∩A②A∩∅=∅③A∩A=A④A∩B⊆A,A∩B⊆B⑤A∩B=A⇔A⊆B⑥A∩B=∅,两个集合没有相同元素⑦A∩(∁UA)=∅⑧∁U(A∩B)=(∁UA)∪(∁UB)并集的运算形状:①A∪B=B∪A②A∪∅=A③A∪A=A④A∪B⊇A,A∪B⊇B⑤A∪B=B⇔A⊆B⑥A∪B=∅,两个集合都是空集⑦A∪(CUA)=U⑧CU(A∪B)=(CUA)∩(CUB)
并集的概念是什么?
1、并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 。2、交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}3、补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}。扩展资料一、交集运算(1)若两个集合A和B的交集为空,则说他们没有公共元素,写作:A∩B = ∅。例如集合 {1,2} 和 {3,4} 不相交,写作 {1,2} ∩ {3,4} = ∅。(2)任何集合与空集的交集都是空集,即A∩∅=∅。(3)更一般的,交集运算可以对多个集合同时进行。例如,集合A、B、C和D的交集为A∩B∩C∩D=A∩[B∩(C ∩D)]。交集运算满足结合律,即A∩(B∩C)=(A∩B) ∩C。(4)最抽象的概念是任意非空集合的集合的交集。若M是一个非空集合,其元素本身也是集合,则 x 属于 M 的交集,当且仅当对任意 M 的元素 A,x 属于 A。这一概念与前述的思想相同,例如,A∩B∩C 是集合 {A,B,C} 的交集(M 何时为空的情况有时候是能够搞清楚的,请见空交集)。二、并集的性质A∪B,B A∪B,A∪A=A,A∪∅=A,A∪B=B∪A若A∩B=A,则A∈B,反之也成立;若A∪B=B,则A∈B,反之也成立。若x∈(A∩B),则x∈A且x∈B;若x∈(A∪B),则x∈A,或x∈B。三、补集运算(1)∁U(A∩B)=(∁UA)∪(∁UB),即“交之补”等于“补之并”;(2)∁U(A∪B)=(∁UA)∩(∁UB),即“并之补”等于“补之交”参考资料:百度百科—交集
交集并集的符号是什么?
交集:表示方法∩。并集:表示方法∪。交集一般地,由所有属于A且属于B的元素所组成的集合,叫做A与B的交集.记作(读作"A交B")。并集一般地,由所有属于A或属于B的元素组成的集合,叫做A与B的并集,记作(读作"A并B")设A={4,5,6,8},B={3,5,7,8}则A交B= {5,8} (公共部分)A并B ={3,4,5,6,7,8} 。运算(1)若两个集合A和B的交集为空,则说他们没有公共元素,写作:A∩B = ∅。例如集合 {1,2} 和 {3,4} 不相交,写作 {1,2} ∩ {3,4} = ∅。(2)任何集合与空集的交集都是空集,即A∩∅=∅。(3)更一般的,交集运算可以对多个集合同时进行。例如,集合A、B、C和D的交集为A∩B∩C∩D=A∩[B∩(C ∩D)]。交集运算满足结合律,即A∩(B∩C)=(A∩B) ∩C。
交集并集符号是什么?
交集表示方法∩,并集表示方法∪。集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。相关信息:二元并集(两个集合的并集)是一种结合运算,即A∪(B∪C) = (A∪B) ∪C。事实上,A∪B∪C也等于这两个集合,因此圆括号在仅进行并集运算的时候可以省略。相似的,并集运算满足交换律,即集合的顺序任意。空集是并集运算的单位元。 即 ∅ ∪A=A。对任意集合A,可将空集当作零个集合的并集。结合交集和补集运算,并集运算使任意幂集成为布尔代数。 例如,并集和交集相互满足分配律,而且这三种运算满足德·摩根律。 若将并集运算换成对称差运算,可以获得相应的布尔环。