一元一次方程

时间:2024-04-27 02:38:44编辑:莆田seo君

一元一次方程有哪些?

一元一次方程公式为ax+b=0(a≠0,a是ax的系数,a与b均为常数)的形式,则这个方程就为一元一次方程。一、一元一次方程定义一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。二、一元一次方程的特点1、为一个等式。2、该方程为整式方程。3、该方程有且只含有一个未知数。4、该方程中未知数的最高次数是1。(系数化为1)5、未知数系数不为0。满足以上五点的方程,就是一元一次方程。三、一元一次方程判定要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为ax+b=0(a≠0,a是ax的系数,a与b均为常数)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。变形公式:ax=b(a,b为常数,x为未知数,且a≠0)。四、两种类型1、总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=6。2、等式两边都含未知数。如:300x+400=400x,40x+20=60x。

一元一次方程是什么?

只含有1个未知数、未知数的最高次数为1,且两边都为整式的等式[必须满足含有未知数、是等式、两边是整式]叫做一元一次方程一元一次方程的表示:ax+b=0,其中a≠0例如3x+5=11是一元一次方程3x+5不是一元一次方程,因为不是等式3×2+5=11不是一元一次方程,因为没有未知数x分之1+5=11不是一元一次方程,因为等式两边不是整式3x²+5=11不是一元一次方程,因为最高项的次数不是1解一元一次方程的一般步骤是:去分母:在方程两边都乘以各分母的最小公倍数.去括号:先去小括号,再去中括号,最后去大括号.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.合并同类项:把方程化成ax[+c]=b(a≠0)的形式.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b[-c]/a例如3x+5=11解[一定要写]:3x+5-5=11-53x=63x÷3=6÷3x=2解一元一次方程应用题8种常用公式①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数; ②行程类问题,即路程=速度×时间; ③工程问题,即工作量=工作效率×工作时间;④浓度问题,即溶质质量=溶液质量×浓度; ⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系; ⑥等积问题,即变形前后的质量(或体积)不变; ⑦数字问题,即有若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a; ⑧经济问题,即利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;税后利息=本金×利率×期数×(1-利息税率);商品的利润=商品的售价-商品的进价;商品的利润率=利润×100%.望采纳

一元一次方程公式是什么?

对于x的一元一次方程是:ax+b=0(a≠0),其求根公式为:x=-b/a。一元一次方程几种解法:1、去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数。2、去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号。3、移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边。4、合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式。5、把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。一元一次方程的应用:一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。如在初等数学范围内证明“0.9的循环等于1”之类的问题。通过验证一元一次方程解的合理性,达到解释和解决生活问题的目的,从一定程度上解决了一部分生产、生活中的问题。

一元一次方程公式是什么?

只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程(英文名:linear equation with one unknown)。一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0),求根公式:x=-b/a。解方程的注意事项1、有分母先去分母。2、有括号就去括号。3、需要移项就进行移项。4、合并同类项。5、系数化为1求得未知数的值。6、开头要写“解”。

一元一次方程是什么?

只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程。其一般形式是:一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。扩展资料:解一元一次方程有五步,即去分母、去括号、移项、合并同类项、系数化为1,所有步骤都根据整式和等式的性质进行。以解方程 为例:1、去分母,得:2、去括号,得:3、移项,得:4、合并同类项,得:5、系数化为1,得:参考资料来源:百度百科-一元一次方程

一元一次方程是什么

一元一次方程的定义:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式;其一般形式为:ax+b=0(a≠0)。一元一次方程只有一个个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题一元一次方程的解法1.合并同类项与整式加减中所学的内容相同,将等号同侧的含有未知数的项和常项分别合并成一项的过程叫做合并同类类项。合并同类项的目的是向接近x=a的形式变形,进一步求出一元一次方程的解。2.移项①概念:把等式一边的某项变号后移到另一边,叫做移项。②依据:移项的依据是等式的性质1。③目的:通常把含有未知数的各项都移到等号的左边,而把不含未知数的各项都移到等号的右边,使方程更接近于x=a的形式。

什么叫一元一次方程?

一元一次方程公式为ax+b=0(a≠0,a是ax的系数,a与b均为常数)的形式,则这个方程就为一元一次方程。一、一元一次方程定义一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。二、一元一次方程的特点1、为一个等式。2、该方程为整式方程。3、该方程有且只含有一个未知数。4、该方程中未知数的最高次数是1。(系数化为1)5、未知数系数不为0。满足以上五点的方程,就是一元一次方程。三、一元一次方程判定要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为ax+b=0(a≠0,a是ax的系数,a与b均为常数)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。变形公式:ax=b(a,b为常数,x为未知数,且a≠0)。四、两种类型1、总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=6。2、等式两边都含未知数。如:300x+400=400x,40x+20=60x。

什么是一元一次方程?

一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数是1。


只含有一个未知数,且未知数次数是一的方程叫一元一次方程。



方程简介
只含有一个未知数,且未知数次数是一的方程叫一元一次方程。通常形式是kx+b=0(k,b为常数,且k≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数是1。一元一次方程英文是(linear equation in one)
编辑本段性质
一.等式的性质一:等式两边同时加一个数或减一同一个数,等式两边相等。 二.等式的性质二:等式两边同时乘一个数或除以同一个数(0除外),等式两边相等。 三.等式的性质三:两边都可以有未知数。
编辑本段一元一次方程的解
ax=b 超准确答案! 1,当a≠0,b=0时,方程有唯一解,x=0; 2,当a≠0,b≠0时,方程有唯一解,x=b/a。 3,当a=0, b=0时,方程有无数解 4,当a=0, b≠0时,方程无解 例: (3x+1)/2-2=(3x-2)/10-(2x+3)/5 去分母(方程两边同乘各分母的最小公倍数) ↓ 5(3x+1)-10×2=(3x-2)-2(2x+3) 去括号 ↓ 15x+5-20=3x-2-4x-6 移项 ↓ 15x-3x+4x=-2-6-5+20 合并同类项!!!!!!! ↓ 16x=7 系数化为1 ↓ x=7/16
编辑本段一元一次方程与实际问题
一元一次方程牵涉到许多的实际问题,例如: 工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题 逆流顺流问题 相向问题。
从算式到方程
列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程(equation)。 1.4x=24 2.1700+150x=2450 3.0.52x-(1-0.52)x=80 上面各方程都只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation with one unknown)。 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
编辑本段一元一次方程的学习实践
在小学会学习较浅的一元一次方程,到了初中开始深入的了解一元一次方程的解法和利用一元一次方程解较难的应用题 一元一次方程含 工程问题 油菜种植问题 相遇问题(路程问题) 牛吃草问题
编辑本段等式
等式两边乘同一个数,或除以同一个不为0的数,结果仍然相等。 3x-4x=-25-20 向上面那样把等式的一边的某项变号后移到另一边,叫做移项。
编辑本段配套问题解一元一次方程的步骤
1.去分母:在方程两边都乘以各分母的最小公倍数; 2.去括号:先去小括号,再去中括号,最后去大括号; 3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边; 4.合并同类项:把方程化成ax=b(a≠0)的形式; 5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a. 定义 :只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。通常形式是kx+b=0(k,b为常数,且k≠0)。
一般解法
: ⒈去分母 方程两边同时乘各分母的最小公倍数。 ⒉去括号 一般先去小括号,再去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。 ⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。(一般都是这样:(比方)从 5x=4x+8 得到 5x - 4x=8 ;把未知数移到一起!~ ⒋合并同类项 将原方程化为ax=b(a≠0)的形式。 ⒌系数化一 方程两边同时除以未知数的系数。 ⒍得出方程的解。
同解方程
:如果两个方程的解相同,那么这两个方程叫做同解方程。 方程的同解原理: ⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 ⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 做一元一次方程应用题的重要方法: ⒈认真审题 ⒉分析已知和未知的量 ⒊找一个等量关系 ⒋设未知数 ⒌列方程 ⒍解方程 ⒎检(jian三声)验 ⒏写出答
编辑本段教学设计示例
教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤,并会列出一元一次方程解简单的应用题; 2.培养学生观察能力,提高他们分析问题和解决问题的能力; 3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.


一元一次方程的定义

一元一次方程的定义:只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根,一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。一元一次方程的解法:1.去分母:在方程两边都乘以各分母的最小公倍数。2.去括号:先去小括号,再去中括号,最后去大括号,记住如括号外有减号的话一定要变号。3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边,移项要变号。4.合并同类项:把方程化成ax=b的形式。5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。

一元一次方程的定义是什么

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。例:学校组织歌咏比赛,某班组织合唱队,男生与女生的比为3:5,男生比女生少4人,求该班合唱队共多少人。解:设男生人数为3x,则女生人数为5x(因为男生与女生的比为3:5),于是列方程如下:5x-3x=4(男生比女生少4人,即女生比男生多4人)解方程得:x=2所以,男生人数=3x=6人女生人数=5x=10人合唱队共有:10+6=16人。答:该班合唱队共有16人。扩展资料列一元一次方程解应用题的一般步骤(1)审题:弄清题意;(2)找出等量关系:找出能够表示本题含义的相等关系;(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;(4)解方程:解所列的方程,求出未知数的值;(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。参考资料来源:百度百科-一元一次方程

什么是一元一次方程式

您好!
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。
编辑本段方程简介
  通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。
满意请采纳


什么是一元一次方程式?

只含有一个未知数,且未知数次数是一的方程叫一元一次方程.通常形式是kx+b=0(k,b为常数,且k≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x的次数是1.


一元一次方程的概念及解法

一元一次方程定义是只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。一元一次方程的解法:1、合并同类项与整式加减中所学的内容相同,将等号同侧的含有未知数的项和常项分别合并成一项的过程叫做合并同类项。合并同类项的目的是向接近x=a的形式变形,进一步求出一元一次方程的解。2、移项①概念:把等式一边的某项变号后移到另一边,叫做移项。②依据:移项的依据是等式的性质1。③目的:通常把含有未知数的各项都移到等号的左边,而把不含未知数的各项都移到等号的右边,使方程更接近于x=a的形式。3、系数化为1①概念:将形如ax=b(a≠0)的方程化成x=b/a的形式,也就是求出方程的解x=b/a的过程,叫做系数化为1。②依据:运用等式的性质2,方程左右两边同时乘未知数系数的倒数。4、去括号解方程过程中,把方程中含有的括号去掉的过程叫去括号。5、去分母①去分母方法:一元一次方程的各项都乘所有分母的最小公倍数,依据等式的性质2使方程中的分母变为1。②去分母的依据:是等式的性质2,即在方程的两边都乘所有分母的最小公倍数,使方程的系数化为整数。

上一篇:一劳永逸的意思

下一篇:艺术特长生招生院校