函数单调性

时间:2024-04-17 08:02:25编辑:莆田seo君

函数的单调性

fx=a[x+b/(2a)]^2-b^2/(4a^2)+c
对称轴x=-b/2a
当a>0时,
在(-∞,-b/(2a)]区间单调递减;
在(-b/2a,+∞)]区间单调递增。
当a<0时,
在(-∞,-b/(2a)]区间单调递增;
在(-b/2a,+∞)]区间单调递减。
证明:
令△x>0
f(x+△)-f(x)=a{[x+△x+b/(2a)]^2-[x+b/(2a)]^2}=a[(2x+△x+b/a)*△x]
=a△x^2+a(2x+b/a)
当△x趋近于0时,f(x+△)-f(x)=a(2x+b/a)

(一)当a>0时
当(2x+b/a)<0,即x<-b/(2a)时,f(x+△)-f(x)=a(2x+b/a)<0,单调递减;
当(2x+b/a)>0,即x>-b/(2a)时,f(x+△)-f(x)=a(2x+b/a)>0,单调递增。
即:
在(-∞,-b/(2a)]区间单调递减;
在(-b/2a,+∞)]区间单调递增。


(备注:以上是a大于零的情况,a小于0时情况如下:)
(二)当a小于0时
当(2x+b/a)<0,即x<-b/(2a)时,f(x+△)-f(x)=a(2x+b/a)>0,单调递增;
当(2x+b/a)>0,即x>-b/(2a)时,f(x+△)-f(x)=a(2x+b/a)<0,单调递减。
即:
在(-∞,-b/(2a)]区间单调递增;
在(-b/2a,+∞)]区间单调递减。


函数的单调性

1.首先这一定是二次函数
你画一下二次函数图像,就会发现这个函数开口向上
顶点横坐标为-2
-(-m)/(2*2)=-2 m=-8
f(x)=2x²-mx+3=2x²+8x+3
f(1)=2*1^2+8*1+3=13
2. .f(x)=x²-(a-1)x+5首先这一定是二次函数
你画一下二次函数图像,就会发现这个函数开口向上
顶点在1/2上或在其左边
-(-(a-1))/(2*1)<=1/2
a-1<=1 f(2)=4-2(a-1)+5=9-2(a-1)
-2(a-1)>=-2 9-2(a-1)>=7
f(2)》=7
3.f(x)=-x²-ax+3
你画一下二次函数图像,就会发现这个函数开口向下
顶点在-1上或在其右边
(--a)/(2*-1)>=-1 a<=2
这三题都得用图像解题
以后做函数类题目都先画一下草图,这样能更容易找到思路也不容易做错


如何判断函数的单调性

判断函数单调性的方法有以下3种:1.作差法(定义法)根据增函数、减函数的定义,利用作差法证明函数的单调性,其步骤有:取值,作差,变形,判号,定性。其中,变形一步是难点,常用技巧有:整式型---因式分解、配方法,还有六项公式法,分式型---通分合并,化为商式,二次根式型---分子有理化。具体:先在区间上取两个值,一般都是X1、X2,设X1>X2(或者X1<X2)然后把X1、X2代进去f(x)解析式做差,也就是算f(X1)-f(X2)关键一步就是化简,一般化成乘或除的形式。这样好判号比如:你设的是X1>X2这个条件,最后化简下来满足f(X1)-f(X2)>0的话,它在区间上就是增函数,反之则为减函数。2.图像法利用函数图像的连续上升或下降的特点判别函数的单调性。3.导数法利用导函数的符号判别函数的单调性。函数单调性的定义一般地,设函数定义域为I.如果对于定义域I内的某个区间D上的任意两个自变量x1,x2,当x1< x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数。

怎样判断函数单调性

判断函数单调性的常见方法一、 函数单调性的定义:一般的,设函数y=f(X)的定义域为A,I↔A,如对于区间内任意两个值X1、X2,1)、当X1<X2时,都有f(X1)<f(X2),那么就说y=f(x)在区间I上是单调增函数,I称为函数的单调增区间;2)、当X1>X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。二、 常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ① 取值:在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1<X2; ② 作差(或商)变形:作差f(X1)-f(X2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形; ③ 定号:确定差f(X1)-f(X2)的符号; ④ 判断:根据定义得出结论。


什么是函数的单调性

函数的单调性是指:函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。单调函数是指对于整个定义域而言,函数具有单调性,而不是针对定义域的子区间而言。例如:反比例函数是一个具有单调性的函数,而不是一个单调函数,因为在反比例函数的定义域上,并不呈现整体的单调性。定义:一般地,设函数F(x)的定义域为l。1、对于属于l内某个区间上的任意两个自变量的值x1、x2,当x1>x2时都有f(x1)≥f(x2),那么就说F(x)在这个区间上是增函数(另一说法为单调不减函数)。如果f(x1)>f(x2),那么就说F(x)在这个区间上是严格增函数(另一种说法是增函数)。2、对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1>x2时都有f(x1)≤f(x2).那么就是f(x)在这个区间上是减函数(另一种说法为单调不增函数)。如果f(x1)为了回避歧义,下文采取单调不减函数,严格增函数,单调不增函数,严格减函数等术语。

函数的单调性

函数的单调性指的是函数的增减性。函数在其定义域内的某个区间上的单调性可以分为单调增、单调减、不具有单调性三种情况。函数的单调性指因变量随自变量增加而增加的性质以及因变量随自变量增加而减小的性质。一次函数单调性决定于k,k>0,函数在R内单调增,K<0时,函数在R内单调减,二次函数单调性看抛物线,当抛物线开口向上时,对称轴左边减,对称轴右边单调减。函数的概念是函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。

如何判断函数的单调性?

函数的单调性(monotonicity)也可以叫做函数的增减性。方法:1、图象观察法如上所述,在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;一直下降的函数图象对应的函数在该区间单调递减。2、求导法导数与函数单调性密切相关。它是研究函数的另一种方法,为其开辟了许多新途径。特别是对于具体函数,利用导数求解函数单调性,思路清晰,步骤明确,既快捷又易于掌握,利用导数求解函数单调性,要求熟练掌握基本求导公式。如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。扩展资料判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:①任取x1,x2∈D,且x1<x2;②作差△y=f(x1)-f(x2);③变形(通常是因式分解和配方);④定号(即判断△y的正负);⑤下结论(即指出函数f(x)在给定的区间D上的单调性)。即为:取值 → 作差 → 变形 → 定号 → 下结论。参考资料来源:百度百科-单调性

函数单调性

1,不够直观。证明或推论要给他人一种最直观明了的感觉,要让别人很清楚每一步是怎么来的,不是说你自己知道就行了,不然很多证明题,比如一些推论和定理,给出题设,我们都知道结果肯定是怎样或不是怎样,但如果让你证明这个推论或者定理,直接就这样说肯定不行。在单调性证明中,有x1与x2的关系到f(x1)与f(x2)的关系是最直接最容易理解的。
2,1/X1与1/X2的关系到x1与x2关系本身也是一个判断证明的过程。在更初级的数学里面,由1/X1与1/X2的关系到x1与x2关系是分步讨论的,分步中的选择条件便是你的题设中限定了的X1,X2>0。
3,特定阶段学习中对细节过程的特殊要求。有很多知识点,在大学里可以当做最基本的常识,就像求不规则曲边梯形或三角函数图形的面积,但在中学阶段却往往是最难的证明。在单调性证明中,如果学了很多导数公式,我们就能直接调用这些公式证明其值在定义域内是>0还是<0即可,甚至不必说明函数值与变量有何具体关系,如果没学,可能求这些函数的导数都是非常困难的,何况去用?


什么是函数的单调性?

函数的单调性也叫函数的增减性.函数的单调性是对某个区间而言的,它是一个局部概念.
增函数与减函数
一般地,设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在 这个区间上是增函数.
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数.
单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间.此时也说函数是这一区间上的单调函数.
在单调区间上,增函数的图像是上升的,减函数的图像是下降的.
注:在单调性中有如下性质
↑(增函数)↓(减函数)


函数单调性的定义

函数单调性的定义是:函数的单调性,也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间,则可判断出:D⊆Q(Q是函数的定义域)。区间D上,对于函数f(x),∀(任取值)x1,x2∈D且x1>x2,都有f(x1)>f(x2)。或,∀x1,x2∈D且x1>x2,都有f(x1)<f(x2)。函数图像一定是上升或下降的。该函数在E⊆D上与D上具有相同的单调性。求函数单调性的基本方法一般是用导数法。对F(x)求导,F’(x)=3x²-3=3(x+1)(x-1)令F’(x)>0,可得到单调递增区间(-∞,-1)∪(1,+∞),同理单调递减区间[-1,1]复合函数还可以用规律法,对于F(g(x)),如果F(x),g(x)都单调递增(减),则复合函数单调递增;否则,单调递减。口诀:同增异减。

上一篇:电大地址

下一篇:好看的言情小说完结的