笛卡尔乘积

时间:2024-04-13 08:56:38编辑:莆田seo君

笛卡尔积如何运算?

笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尔积,又称直积,表示为X×Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成知员,而笛卡尔乘积的具体算法及过程如下:设A,B为一个集合,将A中的元素作为第一个元素,B中的元素作为第二个元素,形成有序对。所有这些有序对都由一个称为a和B的笛卡尔积的集合组成,并被记录为AxB。笛卡尔乘积中专业符号的意义:1、“∈”是数学中的一种符号。读作“内属于”。如果∈a,那么a属于集合a,a是集合a中的元素..当你在数学上读这个符号时,你可以直接用“归属”这个词表达它。2、∧,称为合取,就是逻辑与,例如,当且仅当P∧Q均为真(T),其余均为假(F)时,P为真。3、∨,被称为分离,逻辑或,例如:P∨Q,当且仅当P和Q到F同时,结果为假,其余为真。4、┐为逻辑非容。

什么是笛卡尔积图

  笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尓积,又称直积。表示为X 乘 Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员。

  假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。

  举例:如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。A表示所有声母的集合,B表示所有韵母的集合,那么A和


笛卡尔积是什么

  笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尔积(Cartesianproduct),又称直积,表示为X×Y,第一个对象是X的成员,而第二个对象是Y的所有可能有序对的其中一个成员。设A,B为集合,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合叫做A与B的笛卡尔积,记作AxB。

  笛卡尔积的符号化为:A×B={(x,y)|x∈A∧y∈B}。


笛卡尔积与广义笛卡尔积

广义笛卡尔积假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。可以扩展到多个集合的情况。类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。关系R和关系S的元数分别是3和4,关系T是R与S的广义笛卡儿积,即T=R×S,则关系T的元数是()关系是乘(只是一种定义),但是元数用加,这就是


离散数学关于笛卡尔积的基础问题 证明:(A-B)XC=(AXC)-(BXC)

任取元素∈(A-B)×C,则x∈A-B且y∈C,所以x∈A且x不属于B且y∈C,所以∈A×C且不属于B×C,所以∈(A×C)-(B×C).所以(A-B)×C包含于(A×C)-(B×C).
任取元素∈(A×C)-(B×C),则∈A×C且不属于B×C.由∈A×C得x∈A且y∈C.又不属于B×C,所以x不属于B.所以x∈A且x不属于B,所以x∈A-B.所以x∈A-B且y∈C.所以∈(A-B)×C.所以(A×C)-(B×C)包含于(A-B)×C.
所以,(A-B)×C = (A×C)-(B×C).


笛卡尔积

首先知道啥是笛卡尔积,百度百科中解释是这样的:

通俗理解就是一个集合中的所有元素与另外一个集合中的所有元素的所有组合。需要注意有先后顺序。

举个例子:
集合A={a,b}, B={0,1,2},则
A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}
B×A={(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}

再如:
集合A是所有声母,集合B是所有韵母。那么集合A与集合B的笛卡尔积就是所有的拼音组合。

python默认迭代器库 itertools 提供笛卡尔积计算函数 product 。

用法:

示例1:
计算姓氏“张、李”和名“一、二、三”所有搭配组合。

示例2:
当然不仅仅是两个集合,多个集合也同样可以。
比如字典的生成。

当然如果字典生成不需要有序的话,可以使用另外两个函数 permutations
和 combinations 。

两者的区别在于,如果几个集合的元素相同,但位置顺序不同,permutations记为不同集,而combinations记为同一集合,也就是permutations为有序集合combinations为无序集合。


a与c等势,b与d等势,为什么a与c笛卡尔乘积

左右两边两个集合的意义不同,因此不相等。 如 A={a},B={b},C={0,1}, 那么 A×B={(a,b)},(A×B)×C={((a,b),0),((a,b),1)}, 同理得 A×(B×C)={(a,(b,0)),(a,(b,1))}。【摘要】
a与c等势,b与d等势,为什么a与c笛卡尔乘积【提问】
您好,您的问题我已经看到了,正在整理答案,请稍等一会儿哦~【回答】
a与c等势,b与d等势,为什么a与c笛卡尔乘积【回答】
左右两边两个集合的意义不同,因此不相等。 如 A={a},B={b},C={0,1}, 那么 A×B={(a,b)},(A×B)×C={((a,b),0),((a,b),1)}, 同理得 A×(B×C)={(a,(b,0)),(a,(b,1))}。【回答】


什么叫直积?什么叫笛卡尔乘积?

笛卡尔乘积
名称定义
假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。可以扩展到多个集合的情况。类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。



笛卡儿积的运算性质
由于有序对中x,y的位置是确定的,因此A×B的记法也是确定的,不能写成B×A.
笛卡儿积也可以多个集合合成,A1×A2×…×An.
笛卡儿积的运算性质. 一般不能交换.
笛卡儿积,把集合A,B合成集合A×B,规定
A×B={½xÎAÙyÎB}



推导过程
给定一组域D1,D2,…,Dn,这些域中可以有相同的。D1,D2,…,Dn的笛卡尔积为:
D1×D2×…×Dn={(d1,d2,…,dn)|di�8�3Di,i=1,2,…,n}

所有域的所有取值的一个组合不能重复

例 给出三个域:
D1=SUPERVISOR ={ 张清玫,刘逸 }
D2=SPECIALITY={计算机专业,信息专业}
D3=POSTGRADUATE={李勇,刘晨,王敏}
则D1,D2,D3的笛卡尔积为D:
D=D1×D2×D3 =

{(张清玫,计算机专业,李勇),(张清玫,计算机专业,刘晨),
(张清玫,计算机专业,王敏),(张清玫,信息专业,李勇),
(张清玫,信息专业,刘晨),(张清玫,信息专业,王敏),
(刘逸,计算机专业,李勇),(刘逸,计算机专业,刘晨),
(刘逸,计算机专业,王敏),(刘逸,信息专业,李勇),
(刘逸,信息专业,刘晨),(刘逸,信息专业,王敏) }

这样就把D1,D2,D3这三个集合中的每个元素加以对应组合,形成庞大的集合群。
本个例子中的D中就会有2X2X3个元素,如果一个集合有1000个元素,有这样3个集合,他们的笛卡尔积所组成的新集合会达到十亿个元素。假若某个集合是无限集,那么新的集合就将是有无限个元素。


序偶与笛卡尔积
在日常生活中,有许多事物是成对出现的,而且这种成对出现的事物,具有一定的顺序。例如,上,下;左,右;3〈4;张华高于李明;中国地处亚洲;平面上点的坐标等。一般地说,两个具有固定次序的客体组成一个序偶,它常常表达两个客体之间的关系。记作〈x,y〉。上述各例可分别表示为〈上,下〉;〈左,右〉;〈3,4〉;〈张华,李明〉;〈中国,亚洲〉;〈a,b〉等。
序偶可以看作是具有两个元素的集合。但它与一般集合不同的是序偶具有确定的次序。在集合中{a,b}={b,a},但对序偶〈a,b〉≠〈b,a〉。
设x,y为任意对象,称集合{{x},{x,y}}为二元有序组,或序偶(ordered pairs),简记为 。称x为的第一分量,称y为第二分量。
定义3-4.1 对任意序偶 , , = 当且仅当a=c且b = d 。
递归定义n元序组
={{a1},{a1 , a2}}
= { {a1 , a2},{a1 , a2 , a3}}
= , a3 >
= , an>
两个n元序组相等
= Û(a1=b1) ∧ …∧ (an=bn)
定义3-4.2 对任意集合 A1,A2 , …,An,

(1)A1×A2,称为集合A1,A2的笛卡尔积(Cartesian product),定义为
A1 ×A2={x | $u $v(x = ∧u ÎA1∧vÎA2)}={ | u ÎA1∧vÎA2}

(2)递归地定义 A1 × A2× … × An
A1 × A2×… × An= (A1× A2 × …× An-1)×An
例题1 若A={α,β},B={1,2,3},求A×B,A×A,B×B以及(A×B)Ç(B×A)。
解 A×B={〈α,1〉,〈α,2〉,〈α,3〉,〈β,1〉,〈β,2〉,<β,3〉}
B×A={〈1,α〉,〈1,β〉,〈2,α〉,〈2,β〉,〈3,α〉,〈3,β〉}
A×A={〈α,α〉,〈α,β〉,〈β,α〉,〈β,β〉}
B×B={〈1,1〉,〈1,2〉,〈1,3〉,〈2,1〉,〈2,2〉,〈2,3〉,〈3,1〉,〈3,2〉,〈3,3〉}
(A×B)Ç(B×A)=Æ
由例题1可以看到(A×B)Ç(B×A)=Æ
我们约定若A=Æ或B=Æ,则A×B=Æ。
由笛卡尔定义可知:
(A×B)×C={〈〈a,b〉,c〉|(〈a,b〉∈A×B)∧(c∈C)}
={〈a,b,c〉|(a∈A)∧(b∈B)∧(c∈C)}
A×(B×C)={〈a,〈b,c〉〉|(a∈A)∧(〈b,c〉∈B×C)}
由于〈a,〈b,c〉〉不是三元组,所以
(A×B)×C ≠A×(B×C)
定理3-4.1 设A, B, C为任意集合,*表示 È,Ç或 – 运算,那么有如下结论:
笛卡尔积对于并、交差运算可左分配。即:
A×(B*C)=(A×B)*(A×C)

笛卡尔积对于并、交差运算可右分配。即:
(B*C) ×A=(B×A)*(C×A)

¤ 当*表示 È时,结论(1)的证明思路:(讨论叙述法)
先证明A×(B È C)Í(A×B) È (A×C) 从∈A×(BÈC)出发,推出∈(A ×B) È (A×C)
再证明(A×B) È (A×C) Í A×(B È C)
从∈(A×B) È (A×C)出发,推出∈A×(BÈC)
当*表示 È时,结论(2)的证明思路:(谓词演算法) 见P-103页。¤
定理3-4.2 设A, B, C为任意集合,若C ≠ F,那么有如下结论:
AÍBÛ(A×C ÍB×C) Û (C×AÍC×B) ¤

定理前半部分证明思路 :(谓词演算法)
先证明AÍB Þ (A×CÍB×C)
以AÍB 为条件,从∈A×C出发,推出∈B×C
得出(A×CÍB×C)结论。
再证明(A×C ÍB×C) Þ AÍB
以C≠F为条件,从x∈A出发,对于y∈C,利用Þ附加式,推出x∈B
得出(AÍB)结论。 见P-103页。 ¤
定理3-4.3 设A, B, C, D为任意四个非空集合,那么有如下结论:
A×B Í C×D的充分必要条件是AÍ C,BÍ D

¤证明思路:(谓词演算法)
先证明充分性: A×B Í C×D Þ AÍ C,BÍ D
对于任意的x∈A、y∈B,从∈A×B出发,利用条件A×BÍ C×D, ∈C×D,推出x∈C, y∈D。
再证明必要性: AÍ C,BÍ D ÞA×BÍ C×D
对于任意的x∈A、y∈B,从∈A×B出发,推出∈C×D。

笛卡尔(Descartes)乘积又叫直积。设A、B是任意两个集合,在集合A中任意取一个元素x,在集合B中任意取一个元素y,组成一个有序对(x,y),把这样的有序对作为新的元素,他们的全体组成的集合称为集合A和集合B的直积,记为A×B,即A×B={(x,y)|x∈A且y∈B}。


什么是广义笛卡尔积运算

广义笛卡尔积:
假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),
(b,1),(b,2)}.可以扩展到多个集合的情况.类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示
所有可能的选课情况.关系R和关系S的元数分别是3和4,关系T是R与S的广义笛卡儿积,即T=R×S


上一篇:2144弹弹堂

下一篇:后厨片尾曲叫什么